Bubble Bursting: Universal Cavity and Jet Profiles

Ching Yao Lai, Jens Eggers, Luc Deike

Research output: Contribution to journalArticlepeer-review

68 Scopus citations

Abstract

After a bubble bursts at a liquid surface, the collapse of the cavity generates capillary waves, which focus on the axis of symmetry to produce a jet. The cavity and jet dynamics are primarily controlled by a nondimensional number that compares capillary inertia and viscous forces, i.e., the Laplace number La=ργR0/μ2, where ρ, μ, γ, and R0 are the liquid density, viscosity, interfacial tension, and the initial bubble radius, respectively. In this Letter, we show that the time-dependent profiles of cavity collapse (t<t0) and jet formation (t>t0) both obey a |t-t0|2/3 inviscid scaling, which results from a balance between surface tension and inertia forces. Moreover, we present a scaling law, valid above a critical Laplace number, which reconciles the time-dependent scaling with the recent scaling theory that links the Laplace number to the final jet velocity and ejected droplet size. This leads to a self-similar formula which describes the history of the jetting process, from cavity collapse to droplet formation.

Original languageEnglish (US)
Article number144501
JournalPhysical review letters
Volume121
Issue number14
DOIs
StatePublished - Oct 2 2018

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Bubble Bursting: Universal Cavity and Jet Profiles'. Together they form a unique fingerprint.

Cite this