Broadband physical layer cognitive radio with an integrated photonic processor for blind source separation

Weipeng Zhang, Alexander Tait, Chaoran Huang, Thomas Ferreira de Lima, Simon Bilodeau, Eric C. Blow, Aashu Jha, Bhavin J. Shastri, Paul Prucnal

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

The expansion of telecommunications incurs increasingly severe crosstalk and interference, and a physical layer cognitive method, called blind source separation (BSS), can effectively address these issues. BSS requires minimal prior knowledge to recover signals from their mixtures, agnostic to the carrier frequency, signal format, and channel conditions. However, previous electronic implementations did not fulfil this versatility due to the inherently narrow bandwidth of radio-frequency (RF) components, the high energy consumption of digital signal processors (DSP), and their shared weaknesses of low scalability. Here, we report a photonic BSS approach that inherits the advantages of optical devices and fully fulfils its “blindness” aspect. Using a microring weight bank integrated on a photonic chip, we demonstrate energy-efficient, wavelength-division multiplexing (WDM) scalable BSS across 19.2 GHz processing bandwidth. Our system also has a high (9-bit) resolution for signal demixing thanks to a recently developed dithering control method, resulting in higher signal-to-interference ratios (SIR) even for ill-conditioned mixtures.

Original languageEnglish (US)
Article number1107
JournalNature communications
Volume14
Issue number1
DOIs
StatePublished - Dec 2023

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Broadband physical layer cognitive radio with an integrated photonic processor for blind source separation'. Together they form a unique fingerprint.

Cite this