Broad spectrum pro-quorum-sensing molecules as inhibitors of virulence in vibrios

Wai Leung Ng, Lark Perez, Jianping Cong, Martin F. Semmelhack, Bonnie L. Bassler

Research output: Contribution to journalArticlepeer-review

64 Scopus citations

Abstract

Quorum sensing (QS) is a bacterial cell-cell communication process that relies on the production and detection of extracellular signal molecules called autoinducers. QS allows bacteria to perform collective activities. Vibrio cholerae, a pathogen that causes an acute disease, uses QS to repress virulence factor production and biofilm formation. Thus, molecules that activate QS in V. cholerae have the potential to control pathogenicity in this globally important bacterium. Using a whole-cell high-throughput screen, we identified eleven molecules that activate V. cholerae QS: eight molecules are receptor agonists and three molecules are antagonists of LuxO, the central NtrC-type response regulator that controls the global V. cholerae QS cascade. The LuxO inhibitors act by an uncompetitive mechanism by binding to the pre-formed LuxO-ATP complex to inhibit ATP hydrolysis. Genetic analyses suggest that the inhibitors bind in close proximity to the Walker B motif. The inhibitors display broad-spectrum capability in activation of QS in Vibrio species that employ LuxO. To the best of our knowledge, these are the first molecules identified that inhibit the ATPase activity of a NtrC-type response regulator. Our discovery supports the idea that exploiting pro-QS molecules is a promising strategy for the development of novel anti-infectives.

Original languageEnglish (US)
Article numbere1002767
JournalPLoS pathogens
Volume8
Issue number6
DOIs
StatePublished - Jun 2012

All Science Journal Classification (ASJC) codes

  • Parasitology
  • Microbiology
  • Immunology
  • Molecular Biology
  • Genetics
  • Virology

Fingerprint Dive into the research topics of 'Broad spectrum pro-quorum-sensing molecules as inhibitors of virulence in vibrios'. Together they form a unique fingerprint.

Cite this