Brascamp-Lieb inequality and its reverse: An information theoretic view

Jingbo Liu, Thomas A. Courtade, Paul Cuff, Sergio Verdu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Scopus citations

Abstract

We generalize a result by Carlen and Cordero-Erausquin on the equivalence between the Brascamp-Lieb inequality and the subadditivity of relative entropy by allowing for random transformations (a broadcast channel). This leads to a unified perspective on several functional inequalities that have been gaining popularity in the context of proving impossibility results. We demonstrate that the information theoretic dual of the Brascamp-Lieb inequality is a convenient setting for proving properties such as data processing, tensorization, convexity and Gaussian optimality. Consequences of the latter include an extension of the Brascamp-Lieb inequality allowing for Gaussian random transformations, the determination of the multivariate Wyner common information for Gaussian sources, and a multivariate version of Nelson's hypercontractivity theorem. Finally we present an information theoretic characterization of a reverse Brascamp-Lieb inequality involving a random transformation (a multiple access channel).

Original languageEnglish (US)
Title of host publicationProceedings - ISIT 2016; 2016 IEEE International Symposium on Information Theory
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1048-1052
Number of pages5
ISBN (Electronic)9781509018062
DOIs
StatePublished - Aug 10 2016
Event2016 IEEE International Symposium on Information Theory, ISIT 2016 - Barcelona, Spain
Duration: Jul 10 2016Jul 15 2016

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2016-August
ISSN (Print)2157-8095

Other

Other2016 IEEE International Symposium on Information Theory, ISIT 2016
CountrySpain
CityBarcelona
Period7/10/167/15/16

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Brascamp-Lieb inequality and its reverse: An information theoretic view'. Together they form a unique fingerprint.

  • Cite this

    Liu, J., Courtade, T. A., Cuff, P., & Verdu, S. (2016). Brascamp-Lieb inequality and its reverse: An information theoretic view. In Proceedings - ISIT 2016; 2016 IEEE International Symposium on Information Theory (pp. 1048-1052). [7541459] (IEEE International Symposium on Information Theory - Proceedings; Vol. 2016-August). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ISIT.2016.7541459