Abstract
We prove a characteristic p analogue of a result of Massey which bounds the dimensions of the stalks of a perverse sheaf in terms of certain intersection multiplicities of the characteristic cycle of that sheaf. This uses the construction of the characteristic cycle of a perverse sheaf in characteristic p by Saito. We apply this to prove a conjecture of Shende and Tsimerman on the Betti numbers of the intersections of two translates of theta loci in a hyperelliptic Jacobian. This implies a function field analogue of the Michel–Venkatesh mixing conjecture about the equidistribution of CM points on a product of two modular curves.
Original language | English (US) |
---|---|
Journal | Inventiones Mathematicae |
Volume | 224 |
Issue number | 1 |
DOIs | |
State | Published - Apr 2021 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- General Mathematics