Abstract
For a hypergraph H, we denote by (i) τ(H) the minimum k such that some set of k vertices meets all the edges, (ii) ν(H) the maximum k such that some k edges are pairwise disjoint, and (iii) λ(H) the maximum k≥2 such that the incidence matrix of H has as a submatrix the transpose of the incidence matrix of the complete graph Kk. We show that τ(H) is bounded above by a function of ν(H) and λ(H), and indeed that if λ(H) is bounded by a constant then τ(H) is at most a polynomial function of ν(H).
Original language | English (US) |
---|---|
Pages (from-to) | 23-34 |
Number of pages | 12 |
Journal | Combinatorica |
Volume | 14 |
Issue number | 1 |
DOIs | |
State | Published - Mar 1994 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Discrete Mathematics and Combinatorics
- Computational Mathematics
Keywords
- AMS subject classification codes (1991): 05C65, 05C35