Bouncing-to-Merging Transition in Drop Impact on Liquid Film: Role of Liquid Viscosity

Xiaoyu Tang, Abhishek Saha, Chung K. Law, Chao Sun

Research output: Contribution to journalArticlepeer-review

40 Scopus citations


When a drop impacts on a liquid surface, it can either bounce back or merge with the surface. The outcome affects many industrial processes, in which merging is preferred in spray coating to generate a uniform layer and bouncing is desired in internal combustion engines to prevent accumulation of the fuel drop on the wall. Thus, a good understanding of how to control the impact outcome is highly demanded to optimize the performance. For a given liquid, a regime diagram of bouncing and merging outcomes can be mapped in the space of Weber number (ratio of impact inertia and surface tension) versus film thickness. In addition, recognizing that the liquid viscosity is a fundamental fluid property that critically affects the impact outcome through viscous dissipation of the impact momentum, here we investigate liquids with a wide range of viscosity from 0.7 to 100 cSt, to assess its effect on the regime diagram. Results show that while the regime diagram maintains its general structure, the merging regime becomes smaller for more viscous liquids and the retraction merging regime disappears when the viscosity is very high. The viscous effects are modeled and subsequently the mathematical relations for the transition boundaries are proposed which agree well with the experiments. The new expressions account for all the liquid properties and impact conditions, thus providing a powerful tool to predict and manipulate the outcome when a drop impacts on a liquid film.

Original languageEnglish (US)
Pages (from-to)2654-2662
Number of pages9
Issue number8
StatePublished - Feb 27 2018

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Spectroscopy
  • General Materials Science
  • Surfaces and Interfaces
  • Electrochemistry


Dive into the research topics of 'Bouncing-to-Merging Transition in Drop Impact on Liquid Film: Role of Liquid Viscosity'. Together they form a unique fingerprint.

Cite this