Bond dissociation energies of C10 and C18 methyl esters from local multireference averaged-coupled pair functional theory

Victor B. Oyeyemi, Johannes M. Dieterich, David B. Krisiloff, Ting Tan, Emily A. Carter

Research output: Contribution to journalArticlepeer-review

19 Scopus citations


We previously developed a fast, local, reduced scaling Cholesky-decomposed multireference averaged-coupled pair functional (CD-LMRACPF2) method, which takes advantage of the locality of dynamic correlation and numerical approximations such as Cholesky decomposition and integral screening. Motivated by the desire to study large biodiesel methyl ester molecules, here we validate CD-LMRACPF2 for the computation of bond dissociation energies (BDEs) in a suite of oxygenated molecules, and show that the low-cost method is very accurate compared to the conventional variant. We then demonstrate the power of CD-LMRACPF2 for fast and accurate computation of energies of molecules containing up to 13 second-row atoms within a polarized triple-ζ (cc-pVTZ) basis set. We use biodiesel methyl esters as a chemically interesting model system and furnish BDEs of C10 and C18 methyl esters, with the latter performed within a cc-pVDZ basis set. We describe trends in the BDEs and explain how structural (isomeric) differences affect BDEs, as well as discuss implications of BDE trends for biodiesel physical and chemical properties.

Original languageEnglish (US)
Pages (from-to)3429-3439
Number of pages11
JournalJournal of Physical Chemistry A
Issue number14
StatePublished - Apr 9 2015

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry


Dive into the research topics of 'Bond dissociation energies of C<sub>10</sub> and C<sub>18</sub> methyl esters from local multireference averaged-coupled pair functional theory'. Together they form a unique fingerprint.

Cite this