Abstract
There is a growing interest in minimizing the energy and cost associated with desalination. To do this, various new desalination systems and approaches are being explored. One growing area of interest revolves around electrochemical separations for deionization. Electrochemical separations primarily consist of technologies which either intercalate or electroadorb species of interest from a bulk mixture. This can be conducted through polarizing a battery electrode, or more commonly a capacitive electrode. One example is the technology capacitive deionization (CDI). CDI is being investigated as a means to augment the current state of the art, and as a stand-alone brackish water treatment technology. Despite the potential of this technology, there is still much that is not known regarding the energetics and efficiency of both the desalination and brine formation process. Here, blue refrigeration is a term used to broadly describe desalination cycles and processes. The analogy aims to compare the energetics associated with a desalination cycle to the energetics well studied in thermal refrigeration cycles. This perspective aims to evaluate some of the emerging energetic issues associated with CDI, and to describe how new system architectures may play a role in achieving more ideal energy and desalination performance.
Original language | English (US) |
---|---|
Article number | 2654563 |
Journal | Journal of Electrochemical Energy Conversion and Storage |
Volume | 15 |
Issue number | 1 |
DOIs | |
State | Published - Feb 1 2018 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Renewable Energy, Sustainability and the Environment
- Energy Engineering and Power Technology
- Mechanics of Materials
- Mechanical Engineering