Block-Wise Index Modulation and Receiver Design for High-Mobility OTFS Communications

Mi Qian, Fei Ji, Yao Ge, Miaowen Wen, Xiang Cheng, H. Vincent Poor

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

As a promising technique for high-mobility wireless communications, orthogonal time frequency space (OTFS) has been proven to enjoy excellent advantages with respect to traditional orthogonal frequency division multiplexing (OFDM). Although multiple studies have considered index modulation (IM) based OTFS (IM-OTFS) schemes to further improve system performance, a challenging and open problem is the development of effective IM schemes and efficient receivers for practical OTFS systems that must operate in the presence of channel delays and Doppler shifts. In this paper, we propose two novel block-wise IM schemes for OTFS systems, named delay-IM with OTFS (DeIM-OTFS) and Doppler-IM with OTFS (DoIM-OTFS), where a block of delay/Doppler resource bins are activated simultaneously. Based on a maximum likelihood (ML) detector, we analyze upper bounds on the average bit error rates for the proposed DeIM-OTFS and DoIM-OTFS schemes, and verify their performance advantages over existing IM-OTFS systems. We also develop a multi-layer joint symbol and activation pattern detection (MLJSAPD) algorithm and a customized message passing detection (CMPD) algorithm for our proposed DeIM-OTFS and DoIM-OTFS systems with low complexity. Simulation results demonstrate that our proposed MLJSAPD and CMPD algorithms can achieve desired performance with robustness to the imperfect channel state information (CSI).

Original languageEnglish (US)
Pages (from-to)5726-5739
Number of pages14
JournalIEEE Transactions on Communications
Volume71
Issue number10
DOIs
StatePublished - Oct 1 2023
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Keywords

  • OTFS modulation
  • index modulation
  • layered message passing algorithm
  • performance analysis

Fingerprint

Dive into the research topics of 'Block-Wise Index Modulation and Receiver Design for High-Mobility OTFS Communications'. Together they form a unique fingerprint.

Cite this