TY - GEN
T1 - Blind Pareto Fairness and Subgroup Robustness
AU - Martinez, Natalia
AU - Bertran, Martin
AU - Papadaki, Afroditi
AU - Rodrigues, Miguel
AU - Sapiro, Guillermo
N1 - Publisher Copyright:
Copyright © 2021 by the author(s)
PY - 2021
Y1 - 2021
N2 - Much of the work in the field of group fairness addresses disparities between predefined groups based on protected features such as gender, age, and race, which need to be available at train, and often also at test, time. These approaches are static and retrospective, since algorithms designed to protect groups identified a priori cannot anticipate and protect the needs of different at-risk groups in the future. In this work we analyze the space of solutions for worst-case fairness beyond demographics, and propose Blind Pareto Fairness (BPF), a method that leverages no-regret dynamics to recover a fair minimax classifier that reduces worst-case risk of any potential subgroup of sufficient size, and guarantees that the remaining population receives the best possible level of service. BPF addresses fairness beyond demographics, that is, it does not rely on predefined notions of at-risk groups, neither at train nor at test time. Our experimental results show that the proposed framework improves worst-case risk in multiple standard datasets, while simultaneously providing better levels of service for the remaining population. The code is available at github.com/natalialmg/BlindParetoFairness.
AB - Much of the work in the field of group fairness addresses disparities between predefined groups based on protected features such as gender, age, and race, which need to be available at train, and often also at test, time. These approaches are static and retrospective, since algorithms designed to protect groups identified a priori cannot anticipate and protect the needs of different at-risk groups in the future. In this work we analyze the space of solutions for worst-case fairness beyond demographics, and propose Blind Pareto Fairness (BPF), a method that leverages no-regret dynamics to recover a fair minimax classifier that reduces worst-case risk of any potential subgroup of sufficient size, and guarantees that the remaining population receives the best possible level of service. BPF addresses fairness beyond demographics, that is, it does not rely on predefined notions of at-risk groups, neither at train nor at test time. Our experimental results show that the proposed framework improves worst-case risk in multiple standard datasets, while simultaneously providing better levels of service for the remaining population. The code is available at github.com/natalialmg/BlindParetoFairness.
UR - http://www.scopus.com/inward/record.url?scp=85161057922&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85161057922&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85161057922
T3 - Proceedings of Machine Learning Research
SP - 7492
EP - 7501
BT - Proceedings of the 38th International Conference on Machine Learning, ICML 2021
PB - ML Research Press
T2 - 38th International Conference on Machine Learning, ICML 2021
Y2 - 18 July 2021 through 24 July 2021
ER -