Blind Federated Edge Learning

Mohammad Mohammadi Amiri, Tolga M. Duman, Deniz Gunduz, Sanjeev R. Kulkarni, H. Vincent Poor Poor

Research output: Contribution to journalArticlepeer-review

38 Scopus citations


We study federated edge learning (FEEL), where wireless edge devices, each with its own dataset, learn a global model collaboratively with the help of a wireless access point acting as the parameter server (PS). At each iteration, wireless devices perform local updates using their local data and the most recent global model received from the PS, and send their local updates to the PS over a wireless fading multiple access channel (MAC). The PS then updates the global model according to the signal received over the wireless MAC, and shares it with the devices. Motivated by the additive nature of the wireless MAC, we propose an analog 'over-the-air' aggregation scheme, in which the devices transmit their local updates in an uncoded fashion. However, unlike recent literature on over-the-air FEEL, here we assume that the devices do not have channel state information (CSI), while the PS has imperfect CSI. On the other hand, the PS is equipped with multiple antennas to alleviate the destructive effect of the channel, exacerbated due to the lack of perfect CSI. We design a receive beamforming scheme at the PS, and show that it can compensate for the lack of perfect CSI when the PS has a sufficient number of antennas. We also derive the convergence rate of the proposed algorithm highlighting the impact of the lack of perfect CSI, as well as the number of PS antennas. Both the experimental results and the convergence analysis illustrate the performance improvement of the proposed algorithm with the number of PS antennas, where the wireless fading MAC becomes deterministic despite the lack of perfect CSI when the PS has a sufficiently large number of antennas.

Original languageEnglish (US)
Article number9382114
Pages (from-to)5129-5143
Number of pages15
JournalIEEE Transactions on Wireless Communications
Issue number8
StatePublished - Aug 2021

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Electrical and Electronic Engineering
  • Applied Mathematics


  • Federated edge learning
  • blind transmitters
  • fading multiple access channel
  • multi-antenna parameter server


Dive into the research topics of 'Blind Federated Edge Learning'. Together they form a unique fingerprint.

Cite this