Blind attacks on machine learners

Alex Beatson, Zhaoran Wang, Han Liu

Research output: Contribution to journalConference articlepeer-review

3 Scopus citations

Abstract

The importance of studying the robustness of learners to malicious data is well established. While much work has been done establishing both robust estimators and effective data injection attacks when the attacker is omniscient, the ability of an attacker to provably harm learning while having access to little information is largely unstudied. We study the potential of a "blind attacker" to provably limit a learner's performance by data injection attack without observing the learner's training set or any parameter of the distribution from which it is drawn. We provide examples of simple yet effective attacks in two settings: firstly, where an "informed learner" knows the strategy chosen by the attacker, and secondly, where a "blind learner" knows only the proportion of malicious data and some family to which the malicious distribution chosen by the attacker belongs. For each attack, we analyze minimax rates of convergence and establish lower bounds on the learner's minimax risk, exhibiting limits on a learner's ability to learn under data injection attack even when the attacker is "blind".

Original languageEnglish (US)
Pages (from-to)2405-2413
Number of pages9
JournalAdvances in Neural Information Processing Systems
StatePublished - 2016
Event30th Annual Conference on Neural Information Processing Systems, NIPS 2016 - Barcelona, Spain
Duration: Dec 5 2016Dec 10 2016

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Blind attacks on machine learners'. Together they form a unique fingerprint.

Cite this