Abstract
We review magneto-transport properties of interacting GaAs bilayer hole systems, with very small inter-layer tunneling, in a geometry where equal currents are passed in opposite directions in the two, independently contacted layers (counterflow). In the quantum Hall state at total bilayer filling ν = 1 both the longitudinal and Hall counterflow resistances tend to vanish in the limit of zero temperature, suggesting the existence of a superfluid transport mode in the counterflow geometry. As the density of the two layers is reduced, making the bilayer more interacting, the counterflow Hall resistivity (ρxy) decreases at a given temperature while the counterflow longitudinal resistivity (ρxx), which is much larger than ρxy, hardly depends on density. Our data suggest that the counterflow dissipation present at any finite temperature is a result of mobile vortices in the superfluid created by the ubiquitous disorder in this system.
Original language | English (US) |
---|---|
Pages (from-to) | 11-15 |
Number of pages | 5 |
Journal | Physica E: Low-Dimensional Systems and Nanostructures |
Volume | 34 |
Issue number | 1-2 |
DOIs | |
State | Published - Aug 2006 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics
Keywords
- Bilayer
- Counterflow
- Quantum Hall
- Superfluid