### Abstract

We construct model wave functions for the half-filled Landau level parametrized by "composite fermion occupation-number configurations" in a two-dimensional momentum space, which correspond to a Fermi sea with particle-hole excitations. When these correspond to a weakly excited Fermi sea, they have a large overlap with wave functions obtained by the exact diagonalization of lowest-Landau-level electrons interacting with a Coulomb interaction, allowing exact states to be identified with quasiparticle configurations. We then formulate a many-body version of the single-particle Berry phase for adiabatic transport of a single quasiparticle around a path in momentum space, and evaluate it using a sequence of exact eigenstates in which a single quasiparticle moves incrementally. In this formulation the standard free-particle construction in terms of the overlap between "periodic parts of successive Bloch wave functions" is reinterpreted as the matrix element of a "momentum boost" operator between the full Bloch states, which becomes the matrix elements of a Girvin-MacDonald-Platzman density operator in the many-body context. This allows the computation of the Berry phase for the transport of a single composite fermion around the Fermi surface. In addition to a phase contributed by the density operator, we find a phase of exactly π for this process.

Original language | English (US) |
---|---|

Article number | 147202 |

Journal | Physical review letters |

Volume | 121 |

Issue number | 14 |

DOIs | |

State | Published - Oct 3 2018 |

### All Science Journal Classification (ASJC) codes

- Physics and Astronomy(all)

## Fingerprint Dive into the research topics of 'Berry Phase and Model Wave Function in the Half-Filled Landau Level'. Together they form a unique fingerprint.

## Cite this

*Physical review letters*,

*121*(14), [147202]. https://doi.org/10.1103/PhysRevLett.121.147202