Benchmarking the reproducibility of all-solid-state battery cell performance

Sebastian Puls, Elina Nazmutdinova, Fariza Kalyk, Henry M. Woolley, Jesper Frost Thomsen, Zhu Cheng, Adrien Fauchier-Magnan, Ajay Gautam, Michael Gockeln, So Yeon Ham, Md Toukir Hasan, Min Gi Jeong, Daiki Hiraoka, Jong Seok Kim, Tobias Kutsch, Barthélémy Lelotte, Philip Minnmann, Vanessa Miß, Kota Motohashi, Douglas Lars NelsonFrans Ooms, Francesco Piccolo, Christian Plank, Maria Rosner, Stephanie E. Sandoval, Eva Schlautmann, Robin Schuster, Dominic Spencer-Jolly, Yipeng Sun, Bairav S. Vishnugopi, Ruizhuo Zhang, Huang Zheng, Philipp Adelhelm, Torsten Brezesinski, Peter G. Bruce, Michael Danzer, Mario El Kazzi, Hubert Gasteiger, Kelsey B. Hatzell, Akitoshi Hayashi, Felix Hippauf, Jürgen Janek, Yoon Seok Jung, Matthew T. McDowell, Ying Shirley Meng, Partha P. Mukherjee, Saneyuki Ohno, Bernhard Roling, Atsushi Sakuda, Julian Schwenzel, Xueliang Sun, Claire Villevieille, Marnix Wagemaker, Wolfgang G. Zeier, Nella M. Vargas-Barbosa

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

The interlaboratory comparability and reproducibility of all-solid-state battery cell cycling performance are poorly understood due to the lack of standardized set-ups and assembly parameters. This study quantifies the extent of this variability by providing commercially sourced battery materials—LiNi0.6Mn0.2Co0.2O2 for the positive electrode, Li6PS5Cl as the solid electrolyte and indium for the negative electrode—to 21 research groups. Each group was asked to use their own cell assembly protocol but follow a specific electrochemical protocol. The results show large variability in assembly and electrochemical performance, including differences in processing pressures, pressing durations and In-to-Li ratios. Despite this, an initial open circuit voltage of 2.5 and 2.7 V vs Li+/Li is a good predictor of successful cycling for cells using these electroactive materials. We suggest a set of parameters for reporting all-solid-state battery cycling results and advocate for reporting data in triplicate.

Original languageEnglish (US)
Pages (from-to)1310-1320
Number of pages11
JournalNature Energy
Volume9
Issue number10
DOIs
StatePublished - Oct 2024
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'Benchmarking the reproducibility of all-solid-state battery cell performance'. Together they form a unique fingerprint.

Cite this