TY - GEN
T1 - Behavior is everything - Towards representing concepts with sensorimotor contingencies
AU - Hay, Nicholas
AU - Stark, Michael
AU - Schlegel, Alexander
AU - Wendelken, Carter
AU - Park, Dennis
AU - Purdy, Eric
AU - Silver, Tom
AU - Scott Phoenix, D.
AU - George, Dileep
N1 - Publisher Copyright:
Copyright © 2018, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2018
Y1 - 2018
N2 - AI has seen remarkable progress in recent years, due to a switch from hand-designed shallow representations, to learned deep representations. While these methods excel with plentiful training data, they are still far from the human ability to learn concepts from just a few examples by reusing previously learned conceptual knowledge in new contexts. We argue that this gap might come from a fundamental misalignment between human and typical AI representations: while the former are grounded in rich sensorimotor experience, the latter are typically passive and limited to a few modalities such as vision and text. We take a step towards closing this gap by proposing an interactive, behavior-based model that represents concepts using sensorimotor contingencies grounded in an agent's experience. On a novel conceptual learning and benchmark suite, we demonstrate that conceptually meaningful behaviors can be learned, given supervision via training curricula.
AB - AI has seen remarkable progress in recent years, due to a switch from hand-designed shallow representations, to learned deep representations. While these methods excel with plentiful training data, they are still far from the human ability to learn concepts from just a few examples by reusing previously learned conceptual knowledge in new contexts. We argue that this gap might come from a fundamental misalignment between human and typical AI representations: while the former are grounded in rich sensorimotor experience, the latter are typically passive and limited to a few modalities such as vision and text. We take a step towards closing this gap by proposing an interactive, behavior-based model that represents concepts using sensorimotor contingencies grounded in an agent's experience. On a novel conceptual learning and benchmark suite, we demonstrate that conceptually meaningful behaviors can be learned, given supervision via training curricula.
UR - https://www.scopus.com/pages/publications/85060020664
UR - https://www.scopus.com/inward/citedby.url?scp=85060020664&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85060020664
T3 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
SP - 1861
EP - 1870
BT - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
PB - AAAI press
T2 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
Y2 - 2 February 2018 through 7 February 2018
ER -