Beating the thermodynamic limit with photo-activation of n-doping in organic semiconductors

Xin Lin, Berthold Wegner, Kyung Min Lee, Michael A. Fusella, Fengyu Zhang, Karttikay Moudgil, Barry P. Rand, Stephen Barlow, Seth R. Marder, Norbert Koch, Antoine Kahn

Research output: Contribution to journalArticlepeer-review

122 Scopus citations

Abstract

Chemical doping of organic semiconductors using molecular dopants plays a key role in the fabrication of efficient organic electronic devices. Although a variety of stable molecular p-dopants have been developed and successfully deployed in devices in the past decade, air-stable molecular n-dopants suitable for materials with low electron affinity are still elusive. Here we demonstrate that photo-activation of a cleavable air-stable dimeric dopant can result in kinetically stable and efficient n-doping of host semiconductors, whose reduction potentials are beyond the thermodynamic reach of the dimer's effective reducing strength. Electron-transport layers doped in this manner are used to fabricate high-efficiency organic light-emitting diodes. Our strategy thus enables a new paradigm for using air-stable molecular dopants to improve conductivity in, and provide ohmic contacts to, organic semiconductors with very low electron affinity.

Original languageEnglish (US)
Pages (from-to)1209-1215
Number of pages7
JournalNature Materials
Volume16
Issue number12
DOIs
StatePublished - Dec 1 2017

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Beating the thermodynamic limit with photo-activation of n-doping in organic semiconductors'. Together they form a unique fingerprint.

Cite this