TY - JOUR
T1 - Be it therefore resolved
T2 - Cosmological simulations of dwarf galaxies with 30 solar mass resolution
AU - Wheeler, Coral
AU - Hopkins, Philip F.
AU - Pace, Andrew B.
AU - Garrison-Kimmel, Shea
AU - Boylan-Kolchin, Michael
AU - Wetzel, Andrew
AU - Bullock, James S.
AU - Kereš, Dušan
AU - Faucher-Giguère, Claude André
AU - Quataert, Eliot
N1 - Publisher Copyright:
© 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society
PY - 2019/12/1
Y1 - 2019/12/1
N2 - We study a suite of extremely high-resolution cosmological Feedback in Realistic Environments simulations of dwarf galaxies (Mhalo ≲ 1010 M☉), run to z = 0 with 30 M☉ resolution, sufficient (for the first time) to resolve the internal structure of individual supernovae remnants within the cooling radius. Every halo with Mhalo ≳ 108.6 M☉ is populated by a resolved stellar galaxy, suggesting very low-mass dwarfs may be ubiquitous in the field. Our ultra-faint dwarfs (UFDs; M∗ < 105 M☉) have their star formation (SF) truncated early (z ≳ 2), likely by reionization, while classical dwarfs (M∗ > 105 M☉) continue forming stars to z < 0.5. The systems have bursty star formation histories, forming most of their stars in periods of elevated SF strongly clustered in both space and time. This allows our dwarf with M∗/Mhalo > 10−4 to form a dark matter core >200 pc, while lower mass UFDs exhibit cusps down to ≲100 pc, as expected from energetic arguments. Our dwarfs with M∗ > 104 M☉ have half-mass radii (R1/2) in agreement with Local Group (LG) dwarfs (dynamical mass versus R1/2 and stellar rotation also resemble observations). The lowest mass UFDs are below surface brightness limits of current surveys but are potentially visible in next-generation surveys (e.g. LSST). The stellar metallicities are lower than in LG dwarfs; this may reflect pre-enrichment of the LG by the massive hosts or Pop-III stars. Consistency with lower resolution studies implies that our simulations are numerically robust (for a given physical model).
AB - We study a suite of extremely high-resolution cosmological Feedback in Realistic Environments simulations of dwarf galaxies (Mhalo ≲ 1010 M☉), run to z = 0 with 30 M☉ resolution, sufficient (for the first time) to resolve the internal structure of individual supernovae remnants within the cooling radius. Every halo with Mhalo ≳ 108.6 M☉ is populated by a resolved stellar galaxy, suggesting very low-mass dwarfs may be ubiquitous in the field. Our ultra-faint dwarfs (UFDs; M∗ < 105 M☉) have their star formation (SF) truncated early (z ≳ 2), likely by reionization, while classical dwarfs (M∗ > 105 M☉) continue forming stars to z < 0.5. The systems have bursty star formation histories, forming most of their stars in periods of elevated SF strongly clustered in both space and time. This allows our dwarf with M∗/Mhalo > 10−4 to form a dark matter core >200 pc, while lower mass UFDs exhibit cusps down to ≲100 pc, as expected from energetic arguments. Our dwarfs with M∗ > 104 M☉ have half-mass radii (R1/2) in agreement with Local Group (LG) dwarfs (dynamical mass versus R1/2 and stellar rotation also resemble observations). The lowest mass UFDs are below surface brightness limits of current surveys but are potentially visible in next-generation surveys (e.g. LSST). The stellar metallicities are lower than in LG dwarfs; this may reflect pre-enrichment of the LG by the massive hosts or Pop-III stars. Consistency with lower resolution studies implies that our simulations are numerically robust (for a given physical model).
KW - Galaxies: dwarf
KW - Galaxies: formation
KW - Galaxies: kinematics and dynamics
KW - Galaxies: star formation
KW - Local Group
UR - http://www.scopus.com/inward/record.url?scp=85077566902&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077566902&partnerID=8YFLogxK
U2 - 10.1093/mnras/stz2887
DO - 10.1093/mnras/stz2887
M3 - Article
AN - SCOPUS:85077566902
SN - 0035-8711
VL - 490
SP - 4447
EP - 4463
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 3
ER -