Bayesian uncertainty calculation in neural network inference of ion and electron temperature profiles at W7-X

A. Pavone, J. Svensson, A. Langenberg, N. Pablant, U. Hoefel, S. Kwak, R. C. Wolf

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

We make use of a Bayesian description of the neural network (NN) training for the calculation of the uncertainties in the NN prediction. Having uncertainties on the NN prediction allows having a quantitative measure for trusting the NN outcome and comparing it with other methods. Within the Bayesian framework, the uncertainties can be calculated under different approximations. The NN has been trained with the purpose of inferring ion and electron temperature profile from measurements of a X-ray imaging diagnostic at W7-X. The NN has been trained in such a way that it constitutes an approximation of a full Bayesian model of the diagnostic, implemented within the Minerva framework. The network has been evaluated using measured data and the uncertainties calculated under different approximations have been compared with each other, finding that neglecting the noise on the NN input can lead to an underestimation of the error bar magnitude in the range of 10%-30%.

Original languageEnglish (US)
Article number10K102
JournalReview of Scientific Instruments
Volume89
Issue number10
DOIs
StatePublished - Oct 1 2018

All Science Journal Classification (ASJC) codes

  • Instrumentation

Fingerprint

Dive into the research topics of 'Bayesian uncertainty calculation in neural network inference of ion and electron temperature profiles at W7-X'. Together they form a unique fingerprint.

Cite this