Bayesian negative binomial regression model with unobserved covariates for predicting the frequency of north atlantic tropical storms

Xun Li, Joyee Ghosh, Gabriele Villarini

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Predicting the annual frequency of tropical storms is of interest because it can provide basic information towards improved preparation against these storms. Sea surface temperatures (SSTs) averaged over the hurricane season can predict annual tropical cyclone activity well. But predictions need to be made before the hurricane season when the predictors are not yet observed. Several climate models issue forecasts of the SSTs, which can be used instead. Such models use the forecasts of SSTs as surrogates for the true SSTs. We develop a Bayesian negative binomial regression model, which makes a distinction between the true SSTs and their forecasts, both of which are included in the model. For prediction, the true SSTs may be regarded as unobserved predictors and sampled from their posterior predictive distribution. We also have a small fraction of missing data for the SST forecasts from the climate models. Thus, we propose a model that can simultaneously handle missing predictors and variable selection uncertainty. If the main goal is prediction, an interesting question is should we include predictors in the model that are missing at the time of prediction? We attempt to answer this question and demonstrate that our model can provide gains in prediction.

Original languageEnglish (US)
Pages (from-to)2014-2035
Number of pages22
JournalJournal of Applied Statistics
Volume50
Issue number9
DOIs
StatePublished - 2023
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Statistics, Probability and Uncertainty

Keywords

  • Bayesian model averaging
  • Bayesian variable selection
  • Markov chain Monte Carlo
  • count data
  • missing covariates
  • prediction sets

Fingerprint

Dive into the research topics of 'Bayesian negative binomial regression model with unobserved covariates for predicting the frequency of north atlantic tropical storms'. Together they form a unique fingerprint.

Cite this