TY - JOUR
T1 - Bacterial viability in the built environment of the home
AU - Xie, Joy
AU - Acosta, Ellen M.
AU - Gitai, Zemer
N1 - Publisher Copyright:
Copyright: © 2023 Xie et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2023/11
Y1 - 2023/11
N2 - The built environment (BE) consists of human-made structures and, much like living organisms, is colonized by bacteria that make up the BE microbiome. The BE microbiome can potentially affect human health because of the constant proximity of these bacteria to humans. This has led to increasing public concern of whether the bacteria in the BE are harmful. Previous studies have used approaches based on DNA sequencing to assess the composition of the BE microbiome. However, the extent to which the bacterial DNA in the BE represents viable bacterial cells that could infect human hosts remains unknown. To address this open question we used both culture-based and culture-independent molecular methods to profile bacterial viability of the microbiomes from several BE sites. As part of an undergraduate-led project, we found that the vast majority of the bacterial DNA from the BE is not associated with viable bacteria, suggesting that most bacteria in the BE are dead. To begin to understand the determinants of bacterial viability in the BE we used mock bacterial communities to investigate the effects of temperature, relative humidity, and human interaction on bacterial viability. We found that relative humidity, temperature, and surface material did not have statistically significant effects on BE microbiome viability, but environmental exposure decreased bacterial viability. These results update our conception of the BE microbiome and begin to define the factors that affect BE microbiome viability.
AB - The built environment (BE) consists of human-made structures and, much like living organisms, is colonized by bacteria that make up the BE microbiome. The BE microbiome can potentially affect human health because of the constant proximity of these bacteria to humans. This has led to increasing public concern of whether the bacteria in the BE are harmful. Previous studies have used approaches based on DNA sequencing to assess the composition of the BE microbiome. However, the extent to which the bacterial DNA in the BE represents viable bacterial cells that could infect human hosts remains unknown. To address this open question we used both culture-based and culture-independent molecular methods to profile bacterial viability of the microbiomes from several BE sites. As part of an undergraduate-led project, we found that the vast majority of the bacterial DNA from the BE is not associated with viable bacteria, suggesting that most bacteria in the BE are dead. To begin to understand the determinants of bacterial viability in the BE we used mock bacterial communities to investigate the effects of temperature, relative humidity, and human interaction on bacterial viability. We found that relative humidity, temperature, and surface material did not have statistically significant effects on BE microbiome viability, but environmental exposure decreased bacterial viability. These results update our conception of the BE microbiome and begin to define the factors that affect BE microbiome viability.
UR - http://www.scopus.com/inward/record.url?scp=85176446093&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85176446093&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0288092
DO - 10.1371/journal.pone.0288092
M3 - Article
C2 - 37939059
AN - SCOPUS:85176446093
SN - 1932-6203
VL - 18
JO - PloS one
JF - PloS one
IS - 11 November
M1 - e0288092
ER -