Average of Dirichlet coefficients of cuspidal representations related to GL(2)

Liyang Yang

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Let π be a cuspidal representation on GL(2,AQ). We give nontrivial lower and upper bounds for average of absolute values of Dirichlet coefficients associated to π; and nontrivial upper bound in the case of Sym kπ, k= 2 , 3. These bounds generalize the known estimates in holomorphic case to Maass forms, without assuming the Ramanujan–Petersson conjecture.

Original languageEnglish (US)
Pages (from-to)203-234
Number of pages32
JournalRamanujan Journal
Volume56
Issue number1
DOIs
StatePublished - Oct 2021
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Algebra and Number Theory

Keywords

  • Hecke eigenvalues
  • Ramanujan–Petersson conjecture
  • Symmetric power representations of GL(2)

Fingerprint

Dive into the research topics of 'Average of Dirichlet coefficients of cuspidal representations related to GL(2)'. Together they form a unique fingerprint.

Cite this