Abstract
Calcium imaging is an important technique for monitoring the activity of thousands of neurons simultaneously. As calcium imaging datasets grow in size, automated detection of individual neurons is becoming important. Here we apply a supervised learning approach to this problem and show that convolutional networks can achieve near-human accuracy and superhuman speed. Accuracy is superior to the popular PCA/ICA method based on precision and recall relative to ground truth annotation by a human expert. These results suggest that convolutional networks are an efficient and flexible tool for the analysis of large-scale calcium imaging data.
Original language | English (US) |
---|---|
Pages (from-to) | 3278-3286 |
Number of pages | 9 |
Journal | Advances in Neural Information Processing Systems |
State | Published - 2016 |
Event | 30th Annual Conference on Neural Information Processing Systems, NIPS 2016 - Barcelona, Spain Duration: Dec 5 2016 → Dec 10 2016 |
All Science Journal Classification (ASJC) codes
- Computer Networks and Communications
- Information Systems
- Signal Processing