Augmented Random Oracles

Mark Zhandry

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We propose a new paradigm for justifying the security of random oracle-based protocols, which we call the Augmented Random Oracle Model (AROM). We show that the AROM captures a wide range of important random oracle impossibility results. Thus a proof in the AROM implies some resiliency to such impossibilities. We then consider three ROM transforms which are subject to impossibilities: Fiat-Shamir (FS), Fujisaki-Okamoto (FO), and Encrypt-with-Hash (EwH). We show in each case how to obtain security in the AROM by strengthening the building blocks or modifying the transform. Along the way, we give a couple other results. We improve the assumptions needed for the FO and EwH impossibilities from indistinguishability obfuscation to circularly secure LWE; we argue that our AROM still captures this improved impossibility. We also demonstrate that there is no “best possible” hash function, by giving a pair of security properties, both of which can be instantiated in the standard model separately, which cannot be simultaneously satisfied by a single hash function.

Original languageEnglish (US)
Title of host publicationAdvances in Cryptology – CRYPTO 2022 - 42nd Annual International Cryptology Conference, CRYPTO 2022, Proceedings
EditorsYevgeniy Dodis, Thomas Shrimpton
PublisherSpringer Science and Business Media Deutschland GmbH
Pages35-65
Number of pages31
ISBN (Print)9783031159817
DOIs
StatePublished - 2022
Event42nd Annual International Cryptology Conference, CRYPTO 2022 - Santa Barbara, United States
Duration: Aug 15 2022Aug 18 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13509 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference42nd Annual International Cryptology Conference, CRYPTO 2022
Country/TerritoryUnited States
CitySanta Barbara
Period8/15/228/18/22

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Augmented Random Oracles'. Together they form a unique fingerprint.

Cite this