Abstract
3D bioprinting as a process has enabled the creation of complex structures laden with biological information including cells that is not realizable with conventional manufacturing techniques. Within this new manufacturing process, design strategies and design tools have to be adapted to deliver its full potential. In architecture, parametric design has allowed the creation of new shapes by expressing parameters in an algorithm that defines the relationship between design intent and design response. In this study, the application of this method to the bioprinting of hollow channel grown in silico within a porous scaffold is demonstrated. The final object was printed using a novel bioink formulation based on carboxylated agarose that is extrudable at ambient temperature. The hollow bioprinted object was imaged with X-ray computed tomography to obtain a 3D model for design validation. This proposed workflow “from design to validation” represents a new paradigm for realizing complex structures in 3D bioprinting through in silico optimization.
Original language | English (US) |
---|---|
Pages (from-to) | 233-243 |
Number of pages | 11 |
Journal | Emergent Materials |
Volume | 2 |
Issue number | 2 |
DOIs | |
State | Published - Jun 1 2019 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Biomaterials
- Renewable Energy, Sustainability and the Environment
- Waste Management and Disposal
- Ceramics and Composites