TY - GEN
T1 - Approximation methods for quick evaluation of invariant manifolds during global optimization
AU - Beeson, Ryne
AU - Bunce, Devin
AU - Coverstone, Victoria
N1 - Publisher Copyright:
© 2016, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2016
Y1 - 2016
N2 - The purpose of this paper is to explore potential methods for improving approximation methods of invariant manifolds. The ultimate goal is to produce a set of methods and algorithms that can then be used for rapid evaluation of the invariant manifolds within a global optimization framework. Implemented algorithms must be computationally efficient in terms of both memory storage and execution and provide reasonable accuracy. The techniques explored in this paper build around a baseline cubic convolution method and include analysis of energy projection, polar parameterization, marginalization (integration), linear, fourth-order, and a one-dimension optimal parameter exploration. The result is new insight into the development of efficient and accurate approximation methods, which tend to show that a mix of the above methods could be used to build a better method than baseline cubic convolution.
AB - The purpose of this paper is to explore potential methods for improving approximation methods of invariant manifolds. The ultimate goal is to produce a set of methods and algorithms that can then be used for rapid evaluation of the invariant manifolds within a global optimization framework. Implemented algorithms must be computationally efficient in terms of both memory storage and execution and provide reasonable accuracy. The techniques explored in this paper build around a baseline cubic convolution method and include analysis of energy projection, polar parameterization, marginalization (integration), linear, fourth-order, and a one-dimension optimal parameter exploration. The result is new insight into the development of efficient and accurate approximation methods, which tend to show that a mix of the above methods could be used to build a better method than baseline cubic convolution.
UR - http://www.scopus.com/inward/record.url?scp=84995666124&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84995666124&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84995666124
SN - 9781624104459
T3 - AIAA/AAS Astrodynamics Specialist Conference, 2016
BT - AIAA/AAS Astrodynamics Specialist Conference, 2016
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA/AAS Astrodynamics Specialist Conference, 2016
Y2 - 13 September 2016 through 16 September 2016
ER -