TY - JOUR
T1 - Applicability of Vertically Integrated Models for Carbon Storage Modeling in Structured Heterogeneous Domains
AU - Bandilla, Karl W.
AU - Guo, Bo
AU - Celia, Michael Anthony
N1 - Funding Information:
This material is based upon work supported by the Carbon Mitigation Initiative at Princeton University and by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number FE009563. This project is managed and administered by Princeton University and funded by DOE/NETL and cost-sharing partners. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Publisher Copyright:
© 2017 The Authors.
PY - 2017
Y1 - 2017
N2 - Numerical modeling is an essential tool for investigating the potential of geologic carbon storage and evaluating storage sites. Many different modeling approaches can be applied to problems related to geologic carbon storage, with the choice of modeling approach usually based the type of questions being asked, available computational resources and familiarity with the approach. One option is the vertically-integrated modeling approach, where the three-dimensional governing equations of multiphase flow are integrated over the thickness of the formation. In this paper, we present initial results of a study investigating the applicability of vertically-integrated models for CO2 and brine migration in the context of geologic carbon storage in heterogeneous domains. Results from a full three-dimensional model are compared to results from a vertically-integrated simulator for two test cases. One test case consists of a horizontally homogeneous, but vertically heterogeneous domain (i.e., a layered domain). The second test case has two intersecting vertically heterogeneous channels imbedded in a homogeneous background. The results show good agreement between the two approaches for both the depth-average CO2 plume outline, as well as for the predicted vertical CO2 saturation profiles. Overall, the results suggest that vertically-integrated modeling may be applicable for domains with vertical heterogeneity, such as formation created in fluvial deposition environments.
AB - Numerical modeling is an essential tool for investigating the potential of geologic carbon storage and evaluating storage sites. Many different modeling approaches can be applied to problems related to geologic carbon storage, with the choice of modeling approach usually based the type of questions being asked, available computational resources and familiarity with the approach. One option is the vertically-integrated modeling approach, where the three-dimensional governing equations of multiphase flow are integrated over the thickness of the formation. In this paper, we present initial results of a study investigating the applicability of vertically-integrated models for CO2 and brine migration in the context of geologic carbon storage in heterogeneous domains. Results from a full three-dimensional model are compared to results from a vertically-integrated simulator for two test cases. One test case consists of a horizontally homogeneous, but vertically heterogeneous domain (i.e., a layered domain). The second test case has two intersecting vertically heterogeneous channels imbedded in a homogeneous background. The results show good agreement between the two approaches for both the depth-average CO2 plume outline, as well as for the predicted vertical CO2 saturation profiles. Overall, the results suggest that vertically-integrated modeling may be applicable for domains with vertical heterogeneity, such as formation created in fluvial deposition environments.
KW - geologic carbon storage
KW - vertical heterogeneity
KW - vertically-integrated modeling
UR - http://www.scopus.com/inward/record.url?scp=85029638076&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85029638076&partnerID=8YFLogxK
U2 - 10.1016/j.egypro.2017.03.1463
DO - 10.1016/j.egypro.2017.03.1463
M3 - Conference article
AN - SCOPUS:85029638076
SN - 1876-6102
VL - 114
SP - 3312
EP - 3321
JO - Energy Procedia
JF - Energy Procedia
T2 - 13th International Conference on Greenhouse Gas Control Technologies, GHGT 2016
Y2 - 14 November 2016 through 18 November 2016
ER -