TY - JOUR
T1 - Anyonic quantum spin chains
T2 - Spin-1 generalizations and topological stability
AU - Gils, C.
AU - Ardonne, E.
AU - Trebst, S.
AU - Huse, D. A.
AU - Ludwig, A. W.W.
AU - Troyer, M.
AU - Wang, Z.
PY - 2013/6/17
Y1 - 2013/6/17
N2 - There are many interesting parallels between systems of interacting non-Abelian anyons and quantum magnetism occurring in ordinary SU(2) quantum magnets. Here we consider theories of so-called su(2)k anyons, well-known deformations of SU(2), in which only the first k+1 angular momenta of SU(2) occur. In this paper, we discuss in particular anyonic generalizations of ordinary SU(2) spin chains with an emphasis on anyonic spin S=1 chains. We find that the overall phase diagrams for these anyonic spin-1 chains closely mirror the phase diagram of the ordinary bilinear-biquadratic spin-1 chain including anyonic generalizations of the Haldane phase, the AKLT construction, and supersymmetric quantum critical points. A novel feature of the anyonic spin-1 chains is an additional topological symmetry that protects the gapless phases. Distinctions further arise in the form of an even/odd effect in the deformation parameter k when considering su(2)k anyonic theories with k≥5, as well as for the special case of the su(2)4 theory for which the spin-1 representation plays a special role. We also address anyonic generalizations of spin-12 chains with a focus on the topological protection provided for their gapless ground states. Finally, we put our results into the context of earlier generalizations of SU(2) quantum spin chains, in particular so-called (fused) Temperley-Lieb chains.
AB - There are many interesting parallels between systems of interacting non-Abelian anyons and quantum magnetism occurring in ordinary SU(2) quantum magnets. Here we consider theories of so-called su(2)k anyons, well-known deformations of SU(2), in which only the first k+1 angular momenta of SU(2) occur. In this paper, we discuss in particular anyonic generalizations of ordinary SU(2) spin chains with an emphasis on anyonic spin S=1 chains. We find that the overall phase diagrams for these anyonic spin-1 chains closely mirror the phase diagram of the ordinary bilinear-biquadratic spin-1 chain including anyonic generalizations of the Haldane phase, the AKLT construction, and supersymmetric quantum critical points. A novel feature of the anyonic spin-1 chains is an additional topological symmetry that protects the gapless phases. Distinctions further arise in the form of an even/odd effect in the deformation parameter k when considering su(2)k anyonic theories with k≥5, as well as for the special case of the su(2)4 theory for which the spin-1 representation plays a special role. We also address anyonic generalizations of spin-12 chains with a focus on the topological protection provided for their gapless ground states. Finally, we put our results into the context of earlier generalizations of SU(2) quantum spin chains, in particular so-called (fused) Temperley-Lieb chains.
UR - http://www.scopus.com/inward/record.url?scp=84879726135&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84879726135&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.87.235120
DO - 10.1103/PhysRevB.87.235120
M3 - Article
AN - SCOPUS:84879726135
SN - 1098-0121
VL - 87
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 23
M1 - 235120
ER -