Antimatter cosmic rays from dark matter annihilation: First results from an N-body experiment

J. Lavalle, E. Nezri, E. Athanassoula, F. S. Ling, R. Teyssier

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

While the particle hypothesis for dark matter may be very soon investigated at the LHC, and as the PAMELA and GLAST satellites are currently taking new data on charged and gamma cosmic rays, the need of controlling the theoretical uncertainties affecting the possible indirect signatures of dark matter annihilation is of paramount importance. The uncertainties which originate from the dark matter distribution are difficult to estimate because current astrophysical observations provide rather weak dynamical constraints and because, according to cosmological N-body simulations, dark matter is neither smoothly nor spherically distributed in galactic halos. Some previous studies made use of N-body simulations to compute the γ-ray flux from dark matter annihilation, but such a work has never been performed for the antimatter (positron and antiproton) primary fluxes, for which transport processes complicate the calculations. We take advantage of the galaxylike 3D dark matter map extracted from the Horizon Project results to calculate the positron and antiproton fluxes from dark matter annihilation, in a model-independent approach as well as for dark matter particle benchmarks relevant at the LHC scale (from supersymmetric and extradimensional theories). We find that the flux uncertainties arise mainly from fluctuations of the local dark matter density, and are of ∼1 order of magnitude. We compare our results to analytic descriptions of the dark matter halo, showing how the latter can well reproduce the former. The overall antimatter predictions associated with our benchmark models are shown to lie far below the existing measurements and, in particular, that of the positron fraction recently reported by PAMELA, and far below the background predictions as well. Finally, we stress the limits of the use of an N-body framework in this context.

Original languageEnglish (US)
Article number103526
JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
Volume78
Issue number10
DOIs
StatePublished - Nov 25 2008
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Antimatter cosmic rays from dark matter annihilation: First results from an N-body experiment'. Together they form a unique fingerprint.

Cite this