TY - JOUR
T1 - Annihilation-limited long-range exciton transport in high-mobility conjugated copolymer films
AU - Shi, Yuping
AU - Roy, Partha P.
AU - Higashitarumizu, Naoki
AU - Lee, Tsung Yen
AU - Li, Quanwei
AU - Javey, Ali
AU - Landfester, Katharina
AU - McCulloch, Iain
AU - Fleming, Graham R.
N1 - Publisher Copyright:
Copyright © 2025 the Author(s).
PY - 2025/4/29
Y1 - 2025/4/29
N2 - A combination of ultrafast, long-range, and low-loss excitation energy transfer from the photoreceptor location to a functionally active site is essential for cost-effective polymeric semiconductors. Delocalized electronic wavefunctions along π-conjugated polymer (CP) backbone can enable efficient intrachain transport, while interchain transport is generally thought slow and lossy due to weak chain–chain interactions. In contrast to the conventional strategy of mitigating structural disorder, amorphous layers of rigid CPs, exemplified by highly planar poly(indacenodithiophene-co-benzothiadiazole) (IDT-BT) donor-accepter copolymer, exhibit trap-free transistor performance and charge-carrier mobilities similar to amorphous silicon. Here, we report long-range exciton transport in HJ-aggregated IDTBT thin-film, in which the competing exciton transport and exciton–exciton annihilation (EEA) dynamics are spectroscopically separated using a phase-cycling-based scheme and shown to depart from the classical diffusion-limited and strong-coupling regime. In the thin film, we find an annihilation-limited mechanism with ≪100% per-encounter annihilation probability, facilitating the minimization of EEA-induced excitation losses. In contrast, excitons on isolated IDTBT chains diffuse over 350 nm with 0.56 cm2 s−1 diffusivity, before eventually annihilating with unit probability on first contact. We complement the pump–probe studies with temperature-dependent photocurrent and EEA measurements from 295 K to 77 K and find a remarkable correspondence of annihilation rate and photocurrent activation energies in the 140 K to 295 K temperature range.
AB - A combination of ultrafast, long-range, and low-loss excitation energy transfer from the photoreceptor location to a functionally active site is essential for cost-effective polymeric semiconductors. Delocalized electronic wavefunctions along π-conjugated polymer (CP) backbone can enable efficient intrachain transport, while interchain transport is generally thought slow and lossy due to weak chain–chain interactions. In contrast to the conventional strategy of mitigating structural disorder, amorphous layers of rigid CPs, exemplified by highly planar poly(indacenodithiophene-co-benzothiadiazole) (IDT-BT) donor-accepter copolymer, exhibit trap-free transistor performance and charge-carrier mobilities similar to amorphous silicon. Here, we report long-range exciton transport in HJ-aggregated IDTBT thin-film, in which the competing exciton transport and exciton–exciton annihilation (EEA) dynamics are spectroscopically separated using a phase-cycling-based scheme and shown to depart from the classical diffusion-limited and strong-coupling regime. In the thin film, we find an annihilation-limited mechanism with ≪100% per-encounter annihilation probability, facilitating the minimization of EEA-induced excitation losses. In contrast, excitons on isolated IDTBT chains diffuse over 350 nm with 0.56 cm2 s−1 diffusivity, before eventually annihilating with unit probability on first contact. We complement the pump–probe studies with temperature-dependent photocurrent and EEA measurements from 295 K to 77 K and find a remarkable correspondence of annihilation rate and photocurrent activation energies in the 140 K to 295 K temperature range.
KW - energy transfer
KW - exciton annihilation
KW - many-body interaction
KW - organic semiconductor
KW - ultrafast spectroscopy |
UR - http://www.scopus.com/inward/record.url?scp=105003896477&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105003896477&partnerID=8YFLogxK
U2 - 10.1073/pnas.2413850122
DO - 10.1073/pnas.2413850122
M3 - Article
C2 - 40261928
AN - SCOPUS:105003896477
SN - 0027-8424
VL - 122
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 17
M1 - e2413850122
ER -