Anisotropic winds from close-in extrasolar planets

James M. Stone, Daniel Proga

Research output: Contribution to journalArticlepeer-review

73 Scopus citations

Abstract

We present two-dimensional hydrodynamic models of thermally driven winds from highly irradiated, close-in extrasolar planets. We adopt a very simple treatment of the radiative heating processes at the base of the wind, and instead focus on the differences between the properties of outflows in multidimensions in comparison to spherically symmetric models computed with the same methods. For hot (T ≳ 2 × 104 K) or highly ionized gas, we find that strong (supersonic) polar flows are formed above the planet surface which produce weak shocks and outflow on the night side. In comparison to a spherically symmetric wind with the same parameters, the sonic surface on the day side is much closer to the planet surface in multidimensions, and the total mass-loss rate is reduced by almost a factor of 4. We also compute the steady-state structure of interacting planetary and stellar winds. Both winds end in a termination shock, with a parabolic contact discontinuity which is draped over the planet separating the two shocked winds. The planetary wind termination shock and the sonic surface in the wind are well separated, so that the mass-loss rate from the planet is essentially unaffected. However, the confinement of the planetary wind to the small volume bounded by the contact discontinuity greatly enhances the column density close to the planet, which might be important for the interpretation of observations of absorption lines formed by gas surrounding transiting planets.

Original languageEnglish (US)
Pages (from-to)205-213
Number of pages9
JournalAstrophysical Journal
Volume694
Issue number1
DOIs
StatePublished - 2009

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Keywords

  • Hydrodynamics
  • Methods: numerical
  • Outflows
  • Planetary systems
  • Stars: winds

Fingerprint

Dive into the research topics of 'Anisotropic winds from close-in extrasolar planets'. Together they form a unique fingerprint.

Cite this