Anisotropic material depletion in epitaxial polymer crystallization

Jason X. Liu, Yang Xia, Yucheng Wang, Mikko P. Haataja, Craig B. Arnold, Rodney D. Priestley

Research output: Contribution to journalArticlepeer-review

Abstract

The physical properties of a semicrystalline polymer thin film are intimately related to the morphology of its crystalline domains. While the mechanisms underlying crystallization of flat-on oriented polymer crystals are well known, similar mechanisms remain elusive for edge-on oriented thin films due to the propensity of substantially thin films to adopt flat-on orientations. Here, we employ an epitaxial polymer-substrate relationship to enforce edge-on crystallization in thin films. Using matrix-assisted pulsed laser evaporation (MAPLE), we deposit films in which crystal nucleation is spatially separated from subsequent epitaxial crystallization. These experiments, together with phase-field simulations, demonstrate a highly anisotropic and localized material depletion during edge-on crystallization. These results provide deeper insight into the physics of polymer crystallization under confinement and introduce a processing motif in the crystallization of ultrathin structured films.

Original languageEnglish (US)
Pages (from-to)7691-7695
Number of pages5
JournalSoft matter
Volume19
Issue number40
DOIs
StatePublished - Oct 9 2023

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Anisotropic material depletion in epitaxial polymer crystallization'. Together they form a unique fingerprint.

Cite this