TY - JOUR
T1 - Analytical models of soil and litter decomposition
T2 - Solutions for mass loss and time-dependent decay rates
AU - Manzoni, Stefano
AU - Piñeiro, Gervasio
AU - Jackson, Robert B.
AU - Jobbágy, Esteban G.
AU - Kim, John H.
AU - Porporato, Amilcare
N1 - Funding Information:
This research was supported by the United States Department of Energy (through the Office of Biological and Environmental Research, Terrestrial Ecosystem Science program, grant DE-SC0006967 ), the United States Department of Agriculture (USDA grant 2011-67003-30222 ), and the National Science Foundation ( CBET-10-33467 , DEB 0717191 and grant GEO-0452325 through the Inter-American Institute for Global Change Research , CRN II 2031). G. P. acknowledges the litter and SOM discussion group at IFEVA that contributed to some of the ideas presented in the paper, and was partially funded by PICT 2199 , PIP 132 , and UBACyT .
PY - 2012/7
Y1 - 2012/7
N2 - Combining decomposition data with process-based biogeochemical models is essential to quantify the turnover of organic carbon (C) in surface litter and soil organic matter (SOM). Long-term decomposition may be suitably analyzed by linear models (i.e., all fluxes defined by first-order kinetics), which allow the derivation of analytical expressions to estimate the loss of C and the overall apparent decay rate (k app) through time. Here we compare eight linear models (four discrete-compartment models with one or two C pools, two models with a single time-dependent decay rate, and two models based on a continuous distribution of decay rates) and report their analytical solutions for two types of decomposition experiments: i) studies that evaluate the decomposition of a single input of fresh litter (i.e., a single cohort, as in litterbag and C labeling experiments), and ii) studies that evaluate the decomposition of soil samples with compounds of different ages (i.e., multiple cohorts, as in long-term incubations or isotope dilution experiments). We fitted analytical mass loss functions to both types of datasets and evaluated the performance of the models. For single-cohort data, continuous-decay models provide the best balance between accuracy and parsimony (R 2 = 0.99, lowest Akaike and Bayesian information criteria), while for multiple-cohort data the two-pool models tend to perform better (R 2 = 0.96), perhaps because of the strong separation of time scales in the decomposition data considered. Differences among some models are marginal, suggesting that decomposition data alone do not point to a single 'best' model. All models resulted in apparent decay rates that decreased markedly through time, in contrast with the assumption of constant k adopted in the single-pool exponential decay model. We also show how model parameters estimated from single cohort samples can be used to model multiple cohort decomposition, unifying both types of experimental data in one theory. Based on our results, it is possible to distinguish the temporal changes in C loss that are attributable to initial chemical composition or abiotic factors, from those associated with the presence of multiple ages in the substrate.
AB - Combining decomposition data with process-based biogeochemical models is essential to quantify the turnover of organic carbon (C) in surface litter and soil organic matter (SOM). Long-term decomposition may be suitably analyzed by linear models (i.e., all fluxes defined by first-order kinetics), which allow the derivation of analytical expressions to estimate the loss of C and the overall apparent decay rate (k app) through time. Here we compare eight linear models (four discrete-compartment models with one or two C pools, two models with a single time-dependent decay rate, and two models based on a continuous distribution of decay rates) and report their analytical solutions for two types of decomposition experiments: i) studies that evaluate the decomposition of a single input of fresh litter (i.e., a single cohort, as in litterbag and C labeling experiments), and ii) studies that evaluate the decomposition of soil samples with compounds of different ages (i.e., multiple cohorts, as in long-term incubations or isotope dilution experiments). We fitted analytical mass loss functions to both types of datasets and evaluated the performance of the models. For single-cohort data, continuous-decay models provide the best balance between accuracy and parsimony (R 2 = 0.99, lowest Akaike and Bayesian information criteria), while for multiple-cohort data the two-pool models tend to perform better (R 2 = 0.96), perhaps because of the strong separation of time scales in the decomposition data considered. Differences among some models are marginal, suggesting that decomposition data alone do not point to a single 'best' model. All models resulted in apparent decay rates that decreased markedly through time, in contrast with the assumption of constant k adopted in the single-pool exponential decay model. We also show how model parameters estimated from single cohort samples can be used to model multiple cohort decomposition, unifying both types of experimental data in one theory. Based on our results, it is possible to distinguish the temporal changes in C loss that are attributable to initial chemical composition or abiotic factors, from those associated with the presence of multiple ages in the substrate.
KW - Apparent decay rate
KW - Carbon model
KW - Compartment model
KW - Continuous quality model
KW - Linear systems
KW - Soil organic matter and litter decomposition
UR - http://www.scopus.com/inward/record.url?scp=84860629378&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84860629378&partnerID=8YFLogxK
U2 - 10.1016/j.soilbio.2012.02.029
DO - 10.1016/j.soilbio.2012.02.029
M3 - Article
AN - SCOPUS:84860629378
SN - 0038-0717
VL - 50
SP - 66
EP - 76
JO - Soil Biology and Biochemistry
JF - Soil Biology and Biochemistry
ER -