TY - JOUR
T1 - Analytic Lagrangian tori for the planetary many-body problem
AU - Chierchia, Luigi
AU - Pusateri, Fabio
N1 - Copyright:
Copyright 2009 Elsevier B.V., All rights reserved.
PY - 2009/6
Y1 - 2009/6
N2 - In 2004, Féjoz[Démonstration du thorme dArnold sur la stabilit du systme plantaire (daprs M.Herman). Ergod. Th. & Dynam. Sys. 24(5) (2004), 15211582], completing investigations of Hermans [Dmonstration dun thorme de V.I. Arnold. Sminaire de Systmes Dynamiques et manuscripts, 1998], gave a complete proof of Arnolds Theorem [V.I.Arnold. Small denominators and problems of stability of motion in classical and celestial mechanics.UspekhiMat. Nauk.18(6(114)) (1963), 91192] on the planetary many-body problem, establishing, in particular, the existence of a positive measure set of smooth (C ∞) Lagrangian invariant tori for the planetary many-body problem. Here, using Rmanns 2001 KAM theory [H.Rmann. Invariant tori in non-degenerate nearly integrable Hamiltonian systems. R. & C. Dynamics 2(6) (2001), 119203], we prove the above result in the real-analytic class.
AB - In 2004, Féjoz[Démonstration du thorme dArnold sur la stabilit du systme plantaire (daprs M.Herman). Ergod. Th. & Dynam. Sys. 24(5) (2004), 15211582], completing investigations of Hermans [Dmonstration dun thorme de V.I. Arnold. Sminaire de Systmes Dynamiques et manuscripts, 1998], gave a complete proof of Arnolds Theorem [V.I.Arnold. Small denominators and problems of stability of motion in classical and celestial mechanics.UspekhiMat. Nauk.18(6(114)) (1963), 91192] on the planetary many-body problem, establishing, in particular, the existence of a positive measure set of smooth (C ∞) Lagrangian invariant tori for the planetary many-body problem. Here, using Rmanns 2001 KAM theory [H.Rmann. Invariant tori in non-degenerate nearly integrable Hamiltonian systems. R. & C. Dynamics 2(6) (2001), 119203], we prove the above result in the real-analytic class.
UR - http://www.scopus.com/inward/record.url?scp=69949109905&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=69949109905&partnerID=8YFLogxK
U2 - 10.1017/S0143385708000503
DO - 10.1017/S0143385708000503
M3 - Article
AN - SCOPUS:69949109905
SN - 0143-3857
VL - 29
SP - 849
EP - 873
JO - Ergodic Theory and Dynamical Systems
JF - Ergodic Theory and Dynamical Systems
IS - 3
ER -