TY - JOUR
T1 - An Optical Spectrum of the Diffuse Galactic Light from BOSS and IRIS
AU - Chellew, Blake
AU - Brandt, Timothy D.
AU - Hensley, Brandon S.
AU - Draine, Bruce T.
AU - Matthaey, Eve
N1 - Publisher Copyright:
© 2022. The Author(s). Published by the American Astronomical Society.
PY - 2022/6/1
Y1 - 2022/6/1
N2 - We present a spectrum of the diffuse Galactic light (DGL) between 3700 and 10,000 Å, obtained by correlating optical sky intensity with far-infrared dust emission. We use nearly 250,000 blank-sky spectra from BOSS/SDSS-III together with IRIS-reprocessed maps from the IRAS satellite. The larger sample size compared to SDSS-II results in a factor-of-2 increase in signal to noise. We combine these data sets with a model for the optical/far-infrared correlation that accounts for self-absorption by dust. The spectral features of the DGL agree remarkably well with the features present in stellar spectra. There is evidence for a difference in the DGL continuum between the regions covered by BOSS in the northern and southern Galactic hemispheres. We interpret the difference at red wavelengths as the result of a difference in stellar populations, with mainly old stars in both regions, but a higher fraction of young stars in the south. There is also a broad excess in the southern DGL spectrum over the prediction of a simple radiative transfer model, without a clear counterpart in the north. We interpret this excess, centered at ∼6500 Å, as evidence for luminescence in the form of extended red emission. The observed strength of the 4000 Å break indicates that at most ∼7% of the dust-correlated light at 4000 Å can be due to blue luminescence. Our DGL spectrum provides constraints on dust scattering and luminescence, independent of measurements of extinction.
AB - We present a spectrum of the diffuse Galactic light (DGL) between 3700 and 10,000 Å, obtained by correlating optical sky intensity with far-infrared dust emission. We use nearly 250,000 blank-sky spectra from BOSS/SDSS-III together with IRIS-reprocessed maps from the IRAS satellite. The larger sample size compared to SDSS-II results in a factor-of-2 increase in signal to noise. We combine these data sets with a model for the optical/far-infrared correlation that accounts for self-absorption by dust. The spectral features of the DGL agree remarkably well with the features present in stellar spectra. There is evidence for a difference in the DGL continuum between the regions covered by BOSS in the northern and southern Galactic hemispheres. We interpret the difference at red wavelengths as the result of a difference in stellar populations, with mainly old stars in both regions, but a higher fraction of young stars in the south. There is also a broad excess in the southern DGL spectrum over the prediction of a simple radiative transfer model, without a clear counterpart in the north. We interpret this excess, centered at ∼6500 Å, as evidence for luminescence in the form of extended red emission. The observed strength of the 4000 Å break indicates that at most ∼7% of the dust-correlated light at 4000 Å can be due to blue luminescence. Our DGL spectrum provides constraints on dust scattering and luminescence, independent of measurements of extinction.
UR - http://www.scopus.com/inward/record.url?scp=85134178190&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85134178190&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ac6efc
DO - 10.3847/1538-4357/ac6efc
M3 - Article
AN - SCOPUS:85134178190
SN - 0004-637X
VL - 932
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 112
ER -