An Information Theoretic Approach to the Functional Classification of Neurons

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations

Abstract

A population of neurons typically exhibits a broad diversity of responses to sensory inputs. The intuitive notion of functional classification is that cells can be clustered so that most of the diversity is captured by the identity of the clusters rather than by individuals within clusters. We show how this intuition can be made precise using information theory, without any need to introduce a metric on the space of stimuli or responses. Applied to the retinal ganglion cells of the salamander, this approach recovers classical results, but also provides clear evidence for subclasses beyond those identified previously. Further, we find that each of the ganglion cells is functionally unique, and that even within the same subclass only a few spikes are needed to reliably distinguish between cells.

Original languageEnglish (US)
Title of host publicationNIPS 2002
Subtitle of host publicationProceedings of the 15th International Conference on Neural Information Processing Systems
EditorsSuzanna Becker, Sebastian Thrun, Klaus Obermayer
PublisherMIT Press Journals
Pages197-204
Number of pages8
ISBN (Electronic)0262025507, 9780262025508
StatePublished - 2002
Event15th International Conference on Neural Information Processing Systems, NIPS 2002 - Vancouver, Canada
Duration: Dec 9 2002Dec 14 2002

Publication series

NameNIPS 2002: Proceedings of the 15th International Conference on Neural Information Processing Systems

Conference

Conference15th International Conference on Neural Information Processing Systems, NIPS 2002
Country/TerritoryCanada
CityVancouver
Period12/9/0212/14/02

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Computer Networks and Communications
  • Information Systems

Fingerprint

Dive into the research topics of 'An Information Theoretic Approach to the Functional Classification of Neurons'. Together they form a unique fingerprint.

Cite this