An Information-Theoretic Analysis of In-Context Learning

Hong Jun Jeon, Jason D. Lee, Qi Lei, Benjamin Van Roy

Research output: Contribution to journalConference articlepeer-review

Abstract

Previous theoretical results pertaining to meta-learning on sequences build on contrived and convoluted mixing time assumptions. We introduce new information-theoretic tools that lead to a concise yet general decomposition of error for a Bayes optimal predictor into two components: meta-learning error and intra-task error. These tools unify analyses across many meta-learning challenges. To illustrate, we apply them to establish new results about in-context learning with transformers and corroborate existing results a simple linear setting. Our theoretical results characterize how error decays in both the number of training sequences and sequence lengths. Our results are very general; for example, they avoid contrived mixing time assumptions made by all prior results that establish decay of error with sequence length.

Original languageEnglish (US)
Pages (from-to)21522-21554
Number of pages33
JournalProceedings of Machine Learning Research
Volume235
StatePublished - 2024
Event41st International Conference on Machine Learning, ICML 2024 - Vienna, Austria
Duration: Jul 21 2024Jul 27 2024

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'An Information-Theoretic Analysis of In-Context Learning'. Together they form a unique fingerprint.

Cite this