An examination of geologic carbon sequestration policies in the context of leakage potential

Jeffrey M. Bielicki, Catherine Anne Peters, Jeffrey P. Fitts, Elizabeth J. Wilson

Research output: Contribution to journalArticlepeer-review

40 Scopus citations


Carbon dioxide (CO2) injected into geologic reservoirs for long-term sequestration, or the brine it displaces, may leak through natural or manmade pathways. Using a leakage estimation model, we simulated fluid leakage from a storage reservoir and its migration into overlying formations. The results are discussed in the context of policies that seek to assure long-term sequestration and protect groundwater. This work is based on a case study of CO2 injection into the Mt. Simon sandstone in the Michigan sedimentary basin, for which we constructed a simplified hydrologic representation of the geologic formations. The simulation results show that (1) CO2 leakage can reach an aquifer containing potable water, but numerous intervening stratigraphic traps limit the rate to be orders of magnitude less than the rate of leakage from the storage reservoir; (2) U.S. Department of Energy guidelines for storage permanence allow for more leakage from larger injection projects than for smaller ones; (3) well leakage permeability is the most important variable in determining leakage processes and substantial leakage requires that numerous wells leaking with the anomalously high permeability of 10-10m2; and (4) leakage can reduce the U.S. Environmental Protection Agency's Area of Review.

Original languageEnglish (US)
Pages (from-to)61-75
Number of pages15
JournalInternational Journal of Greenhouse Gas Control
StatePublished - Jun 1 2015

All Science Journal Classification (ASJC) codes

  • Pollution
  • General Energy
  • Management, Monitoring, Policy and Law
  • Industrial and Manufacturing Engineering


  • Area of Review
  • CCS
  • CCUS policy
  • Caprock
  • Carbon sequestration
  • Geologic storage
  • Leakage


Dive into the research topics of 'An examination of geologic carbon sequestration policies in the context of leakage potential'. Together they form a unique fingerprint.

Cite this