An energy-optimization method to study gel-swelling in confinement

Chaitanya Joshi, Mathew Q. Giso, Jean François Louf, Sujit S. Datta, Timothy J. Atherton

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

We recast the problem of hydrogel swelling under physical constraints as an energy optimization problem. We apply this approach to compute equilibrium shapes of hydrogel spheres confined within a jammed matrix of rigid beads and interpret the results to determine how confinement modifies the mechanics of swollen hydrogels. In contrast to the unconfined case, we find a spatial separation of strains within the bulk of the hydrogel as the strain becomes localized to an outer region. We also explore the contact mechanics of the gel, finding a transition from Hertzian behavior to non-Hertzian behavior as a function of swelling. Our model, implemented in the Morpho shape optimization environment and validated against an experimentally demonstrated prototypical scenario, can be applied in any dimension, readily adapted to diverse swelling scenarios and extended to use other energies in conjunction.

Original languageEnglish (US)
Pages (from-to)7184-7191
Number of pages8
JournalSoft matter
Volume19
Issue number37
DOIs
StatePublished - Aug 28 2023

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'An energy-optimization method to study gel-swelling in confinement'. Together they form a unique fingerprint.

Cite this