An Architecture for Large-Area Sensor Acquisition Using Frequency-Hopping ZnO TFT DCOs

Yasmin Afsar, Tiffany Moy, Nicholas Brady, Sigurd Wagner, James C. Sturm, Naveen Verma

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Hybrid systems combine large-area electronics (LAE) with silicon-CMOS ICs for sensing and computation, respectively. In such systems, interfacing a large number of distributed LAE sensors with the CMOS domain poses a key limitation. This paper presents an architecture that aims to greatly reduce both the number of physical connections and the time for accessing all of the sensors. Each sensor modulates the amplitude of a thin-film transistor (TFT) digitally controlled oscillator (DCO). All DCO outputs are combined, but each follows a unique frequency-hopping pattern (controlled by a code from CMOS), allowing recovery of the individual sensors. The architecture enables much greater scalability of sensors for a given number of connections than active-matrix and binary-addressing schemes. For demonstration, an 18-element large-area force-sensing system is demonstrated based on zinc-oxide (ZnO) TFT DCOs with a frequency-hopping rate of 4.2 kHz. Acquisition error ≤ 62 mVrms is achieved over 30 weight patterns.

Original languageEnglish (US)
Article number8054688
Pages (from-to)297-308
Number of pages12
JournalIEEE Journal of Solid-State Circuits
Volume53
Issue number1
DOIs
StatePublished - Jan 2018

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Keywords

  • Hybrid systems
  • ZnO TFT
  • large-area electronics (LAE)
  • metal-oxide thin-film transistor (TFT)
  • sensing systems

Fingerprint

Dive into the research topics of 'An Architecture for Large-Area Sensor Acquisition Using Frequency-Hopping ZnO TFT DCOs'. Together they form a unique fingerprint.

Cite this