Abstract
The instability processes which generate unstable waves with characteristics similar to observed tropical instability waves in the Pacific Ocean are examined through a local energy analysis based on deviations from the time mean flow. Numerical experiments indicate that the waves develop preferentially in the eastern Pacific along the northern temperature front and have a westward phase speed and a structure with two peaks in amplitude: one located on the equator and the other a few degrees north of it. The energy analysis shows that the "two-peak" structure of the eastern waves is explained by two different instability processes which occur at different latitudes. In the time mean sense the region north of the equator is baroclinically unstable, while barotropic instability prevails at the equator. The life cycle of the waves is revealed by the time evolution of the energetics. Baroclinic instability is the dominant triggering mechanism which induces growth of the waves along the northern temperature front. The eddy pressure fluxes radiate energy south of the equator where the meridional shear between the Equatorial Undercurrent and the South Equatorial Current becomes barotropically unstable. From the numerical simulations, there is evidence of a second unstable region in the central Pacific south of the equator where the instabilities have a lower phase speed. The energy analysis also shows that these waves grow from both barotropic and baroclinic conversions.
Original language | English (US) |
---|---|
Article number | 1999JC900226 |
Pages (from-to) | 29637-29661 |
Number of pages | 25 |
Journal | Journal of Geophysical Research: Oceans |
Volume | 104 |
Issue number | C12 |
DOIs | |
State | Published - Dec 15 1999 |
All Science Journal Classification (ASJC) codes
- Geochemistry and Petrology
- Geophysics
- Earth and Planetary Sciences (miscellaneous)
- Space and Planetary Science
- Atmospheric Science
- Astronomy and Astrophysics
- Oceanography