An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves

John Pardon

Research output: Contribution to journalArticlepeer-review

66 Scopus citations

Abstract

We develop techniques for defining and working with virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves which are not necessarily cut out transversally. Such techniques have the potential for applications as foundations for invariants in symplectic topology arising from “counting” pseudo-holomorphic curves. We introduce the notion of an implicit atlas on a moduli space, which is (roughly) a convenient system of local finite-dimensional reductions. We present a general intrinsic strategy for constructing a canonical implicit atlas on any moduli space of pseudo-holomorphic curves. The main technical step in applying this strategy in any particular setting is to prove appropriate gluing theorems. We require only topological gluing theorems, that is, smoothness of the transition maps between gluing charts need not be addressed. Our approach to virtual fundamental cycles is algebraic rather than geometric (in particular, we do not use perturbation). Sheaf-theoretic tools play an important role in setting up our functorial algebraic “VFC package”. We illustrate the methods we introduce by giving definitions of Gromov–Witten invariants and Hamiltonian Floer homology over ℚ for general symplectic manifolds. Our framework generalizes to the S1 –equivariant setting, and we use S1 –localization to calculate Hamiltonian Floer homology. The Arnold conjecture (as treated by Floer, by Hofer and Salamon, by Ono, by Liu and Tian, by Ruan, and by Fukaya and Ono) is a well-known corollary of this calculation.

Original languageEnglish (US)
Pages (from-to)779-1034
Number of pages256
JournalGeometry and Topology
Volume20
Issue number2
DOIs
StatePublished - Apr 28 2016

All Science Journal Classification (ASJC) codes

  • Geometry and Topology

Keywords

  • Arnold conjecture
  • Floer homology
  • Gluing
  • Gromov-Witten invariants
  • Hamiltonian Floer homology
  • Implicit atlases
  • Pseudo-holomorphic curves
  • S-localization
  • Transversality
  • Virtual fundamental cycles

Fingerprint

Dive into the research topics of 'An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves'. Together they form a unique fingerprint.

Cite this