TY - JOUR
T1 - Amphiphilic peroxynitrite decomposition catalysts in liposomal assemblies
AU - Hunt, Julianne A.
AU - Lee, Jinbo
AU - Groves, John Taylor
N1 - Funding Information:
Support of this research by the National Institutes of Health (GM36928 and RR1 1282 to J.T.G. for the purchase of an electrospray mass spectrometer), the National Science Foundation for the purchase of 500 and 600 MHz NMR spectrometers, and Princeton University for the purchase of a stopped-flow spectrophotometer are gratefully acknowledged. J.A.H. is the recipient of an NIH NRSA fellowship (GM1 8490).
PY - 1997/11
Y1 - 1997/11
N2 - Background: Peroxynitrite (ONOO-), a toxic biological oxidant, has been implicated in many pathophysiological conditions. The water-soluble porphyrins 5,10,15,20-tetrakis(N-methyl-4'-pyridyl)porphinato iron(III) (FeTMPyP) and manganese(III) (MnTMPyP) have recently emerged as potential drugs for ONOO- detoxification, and FeTMPyP has demonstrated activity in models of ONOO- related disease states. We set out to develop amphiphilic analogs of FeTMPyP and MnTMPyP suitable for liposomal delivery in sterically stabilized liposomes (SLs). Results: Three amphiphilic iron porphyrins (termed 1a-c) and three manganese porphyrins (termed 2a-c) bound to liposomes and catalyzed the decomposition of ONOO-. The polyethylene-glycol-linked metalloporphyrins 1b and 2b proved the most effective of these catalysts, rapidly decomposing ONOO- with second-order rate constants (k(cat)) of 2.9 x 105 M-1 s-1 and 5.0 x 106 M-1 s-1, respectively, in dimyristoylphosphatidylcholine liposomes. Catalysts 1b and 2b also bound to SLs, and these metalloporphyrin-SL constructs efficiently catalyzed ONOO- decomposition (k(cat) ≃ 2 x 105 M-1 s-1). The analogous metalloporphyrins 1a and 2a, which are not separated from the vesicle membrane surface by polyethylene glycol linkers, were significantly less effective (kcat ≃ 3.5 x 104 M-1 s-1). Conclusions: For these amphiphilic analogs of FeTMPyP and MnTMPyP, the polarity of the environment of the metalloporphyrin headgroup is intimately related to the efficiency of the catalyst; a polar aqueous environment is essential for effective catalysis of ONOO- decomposition. Thus, catalysts 1b and 2b react rapidly with ONOO- and are potential therapeutic agents that, unlike their water-soluble TMPyP analogs, could be administered as liposomal formulations in SLs. These SL-bound amphiphilic metalloporphyrins may prove to be highly effective in the exploration and treatment of ONOO- related disease states.
AB - Background: Peroxynitrite (ONOO-), a toxic biological oxidant, has been implicated in many pathophysiological conditions. The water-soluble porphyrins 5,10,15,20-tetrakis(N-methyl-4'-pyridyl)porphinato iron(III) (FeTMPyP) and manganese(III) (MnTMPyP) have recently emerged as potential drugs for ONOO- detoxification, and FeTMPyP has demonstrated activity in models of ONOO- related disease states. We set out to develop amphiphilic analogs of FeTMPyP and MnTMPyP suitable for liposomal delivery in sterically stabilized liposomes (SLs). Results: Three amphiphilic iron porphyrins (termed 1a-c) and three manganese porphyrins (termed 2a-c) bound to liposomes and catalyzed the decomposition of ONOO-. The polyethylene-glycol-linked metalloporphyrins 1b and 2b proved the most effective of these catalysts, rapidly decomposing ONOO- with second-order rate constants (k(cat)) of 2.9 x 105 M-1 s-1 and 5.0 x 106 M-1 s-1, respectively, in dimyristoylphosphatidylcholine liposomes. Catalysts 1b and 2b also bound to SLs, and these metalloporphyrin-SL constructs efficiently catalyzed ONOO- decomposition (k(cat) ≃ 2 x 105 M-1 s-1). The analogous metalloporphyrins 1a and 2a, which are not separated from the vesicle membrane surface by polyethylene glycol linkers, were significantly less effective (kcat ≃ 3.5 x 104 M-1 s-1). Conclusions: For these amphiphilic analogs of FeTMPyP and MnTMPyP, the polarity of the environment of the metalloporphyrin headgroup is intimately related to the efficiency of the catalyst; a polar aqueous environment is essential for effective catalysis of ONOO- decomposition. Thus, catalysts 1b and 2b react rapidly with ONOO- and are potential therapeutic agents that, unlike their water-soluble TMPyP analogs, could be administered as liposomal formulations in SLs. These SL-bound amphiphilic metalloporphyrins may prove to be highly effective in the exploration and treatment of ONOO- related disease states.
KW - Membrane self-assembly
KW - Metalloporphyrins
KW - Peroxynitrite
KW - Sterically stabilized liposomes
UR - http://www.scopus.com/inward/record.url?scp=0031278467&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031278467&partnerID=8YFLogxK
U2 - 10.1016/S1074-5521(97)90117-4
DO - 10.1016/S1074-5521(97)90117-4
M3 - Article
C2 - 9384531
AN - SCOPUS:0031278467
SN - 1074-5521
VL - 4
SP - 845
EP - 858
JO - Chemistry and Biology
JF - Chemistry and Biology
IS - 11
ER -