Amortized finite element analysis for fast PDE-constrained optimization

Tianju Xue, Alex Beatson, Sigrid Adriaenssens, Ryan P. Adams

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Scopus citations

Abstract

Optimizing the parameters of partial differential equations (PDEs), i.e., PDE-constrained optimization (PDE-CO), allows us to model natural systems from observations or perform rational design of structures with complicated mechanical, thermal, or electromagnetic properties. However, PDE-CO is often computationally prohibitive due to the need to solve the PDE—typically via finite element analysis (FEA)—at each step of the optimization procedure. In this paper we propose amortized finite element analysis (AmorFEA), in which a neural network learns to produce accurate PDE solutions, while preserving many of the advantages of traditional finite element methods. This network is trained to directly minimize the potential energy from which the PDE and finite element method are derived, avoiding the need to generate costly supervised training data by solving PDEs with traditional FEA. As FEA is a variational procedure, AmorFEA is a direct analogue to popular amortized inference approaches in latent variable models, with the finite element basis acting as the variational family. AmorFEA can perform PDE-CO without the need to repeatedly solve the associated PDE, accelerating optimization when compared to a traditional workflow using FEA and the adjoint method.

Original languageEnglish (US)
Title of host publication37th International Conference on Machine Learning, ICML 2020
EditorsHal Daume, Aarti Singh
PublisherInternational Machine Learning Society (IMLS)
Pages10569-10578
Number of pages10
ISBN (Electronic)9781713821120
StatePublished - 2020
Event37th International Conference on Machine Learning, ICML 2020 - Virtual, Online
Duration: Jul 13 2020Jul 18 2020

Publication series

Name37th International Conference on Machine Learning, ICML 2020
VolumePartF168147-14

Conference

Conference37th International Conference on Machine Learning, ICML 2020
CityVirtual, Online
Period7/13/207/18/20

All Science Journal Classification (ASJC) codes

  • Computational Theory and Mathematics
  • Human-Computer Interaction
  • Software

Fingerprint

Dive into the research topics of 'Amortized finite element analysis for fast PDE-constrained optimization'. Together they form a unique fingerprint.

Cite this