TY - JOUR
T1 - Alternative acetate production pathways in chlamydomonas reinhardtii during dark anoxia and the dominant role of chloroplasts in fermentative acetate production
AU - Yang, Wenqiang
AU - Catalanotti, Claudia
AU - D’adamo, Sarah
AU - Wittkopp, Tyler M.
AU - Ingram-Smith, Cheryl J.
AU - Mackinder, Luke
AU - Miller, Tarryn E.
AU - Heuberger, Adam L.
AU - Peers, Graham
AU - Smith, Kerry S.
AU - Jonikas, Martin C.
AU - Grossman, Arthur R.
AU - Posewitz, Matthew C.
N1 - Publisher Copyright:
© 2014 American Society of Plant Biologists. All rights reserved.
PY - 2014
Y1 - 2014
N2 - Chlamydomonas reinhardtii insertion mutants disrupted for genes encoding acetate kinases (EC 2.7.2.1) (ACK1 and ACK2) and a phosphate acetyltransferase (EC 2.3.1.8) (PAT2, but not PAT1) were isolated to characterize fermentative acetate production. ACK1 and PAT2 were localized to chloroplasts, while ACK2 and PAT1 were shown to be in mitochondria. Characterization of the mutants showed that PAT2 and ACK1 activity in chloroplasts plays a dominant role (relative to ACK2 and PAT1 in mitochondria) in producing acetate under dark, anoxic conditions and, surprisingly, also suggested that Chlamydomonas has other pathways that generate acetate in the absence of ACK activity. We identified a number of proteins associated with alternative pathways for acetate production that are encoded on the Chlamydomonas genome. Furthermore, we observed that only modest alterations in the accumulation of fermentative products occurred in the ack1, ack2, and ack1 ack2 mutants, which contrasts with the substantial metabolite alterations described in strains devoid of other key fermentation enzymes.
AB - Chlamydomonas reinhardtii insertion mutants disrupted for genes encoding acetate kinases (EC 2.7.2.1) (ACK1 and ACK2) and a phosphate acetyltransferase (EC 2.3.1.8) (PAT2, but not PAT1) were isolated to characterize fermentative acetate production. ACK1 and PAT2 were localized to chloroplasts, while ACK2 and PAT1 were shown to be in mitochondria. Characterization of the mutants showed that PAT2 and ACK1 activity in chloroplasts plays a dominant role (relative to ACK2 and PAT1 in mitochondria) in producing acetate under dark, anoxic conditions and, surprisingly, also suggested that Chlamydomonas has other pathways that generate acetate in the absence of ACK activity. We identified a number of proteins associated with alternative pathways for acetate production that are encoded on the Chlamydomonas genome. Furthermore, we observed that only modest alterations in the accumulation of fermentative products occurred in the ack1, ack2, and ack1 ack2 mutants, which contrasts with the substantial metabolite alterations described in strains devoid of other key fermentation enzymes.
UR - http://www.scopus.com/inward/record.url?scp=84919816924&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84919816924&partnerID=8YFLogxK
U2 - 10.1105/tpc.114.129965
DO - 10.1105/tpc.114.129965
M3 - Article
C2 - 25381350
AN - SCOPUS:84919816924
SN - 1040-4651
VL - 26
SP - 4499
EP - 4518
JO - Plant Cell
JF - Plant Cell
IS - 11
ER -