TY - GEN
T1 - Age of Information Based Statistical Delay-Bounded QoS Provisioning over Multimedia Mobile Wireless Networks
AU - Zhang, Xi
AU - Zhu, Qixuan
AU - Poor, H. Vincent
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/12
Y1 - 2020/12
N2 - Time-sensitive multimedia services and applications aim at satisfying users' stringent requirements on the delay-bounded quality-of-service (QoS). The statistical delay-bounded QoS provisioning theory has been developed to guarantee a given delay-bound with a small violation probability in multimedia wireless networks. The age of information (AoI) theory characterizes the freshness of information, which is the time-difference between the current time and the time-stamp of the latest observation, and thus, is another important theory to analyze the information latency in multimedia wireless networks. This paper proposes to integrate the statistical delay-bounded QoS provisioning theory with the age of information theory to investigate information latency and to improve the delay-bounded QoS performance over a stationary and ergodic first-come-first-serve M/M/1 channel in multimedia wireless networks. First, we define an AoI-exponent to measure the decaying rate of the violation probability for the maximum allowed AoI and characterize the relationship between the key parameter QoS-exponent in statistical delay-bounded QoS provisioning theory and the AoI-exponent in AoI theory. Second, we also derive a closed form expression of the AoI-based effective capacity, as a function of both the QoS-exponent and the AoI-exponent, to measure the optimal constant information updating rate for a given service process to support the statistical-bounded AoI guarantee. Third, we jointly optimize the statistical delay-bounded QoS and statistical upper-bounded AoI schemes. Finally, we validate and evaluate AoI based statistical delay-bounded QoS provisioning schemes over multimedia mobile wireless networks through numerical analyses.
AB - Time-sensitive multimedia services and applications aim at satisfying users' stringent requirements on the delay-bounded quality-of-service (QoS). The statistical delay-bounded QoS provisioning theory has been developed to guarantee a given delay-bound with a small violation probability in multimedia wireless networks. The age of information (AoI) theory characterizes the freshness of information, which is the time-difference between the current time and the time-stamp of the latest observation, and thus, is another important theory to analyze the information latency in multimedia wireless networks. This paper proposes to integrate the statistical delay-bounded QoS provisioning theory with the age of information theory to investigate information latency and to improve the delay-bounded QoS performance over a stationary and ergodic first-come-first-serve M/M/1 channel in multimedia wireless networks. First, we define an AoI-exponent to measure the decaying rate of the violation probability for the maximum allowed AoI and characterize the relationship between the key parameter QoS-exponent in statistical delay-bounded QoS provisioning theory and the AoI-exponent in AoI theory. Second, we also derive a closed form expression of the AoI-based effective capacity, as a function of both the QoS-exponent and the AoI-exponent, to measure the optimal constant information updating rate for a given service process to support the statistical-bounded AoI guarantee. Third, we jointly optimize the statistical delay-bounded QoS and statistical upper-bounded AoI schemes. Finally, we validate and evaluate AoI based statistical delay-bounded QoS provisioning schemes over multimedia mobile wireless networks through numerical analyses.
KW - Age of information (AoI)
KW - age threshold
KW - effective capacity.
KW - multimedia wireless networks
KW - statistical delay-bounded quality-of-service (QoS)
KW - statistical-bounded AoI
UR - http://www.scopus.com/inward/record.url?scp=85100420750&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100420750&partnerID=8YFLogxK
U2 - 10.1109/GLOBECOM42002.2020.9322503
DO - 10.1109/GLOBECOM42002.2020.9322503
M3 - Conference contribution
AN - SCOPUS:85100420750
T3 - 2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings
BT - 2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2020 IEEE Global Communications Conference, GLOBECOM 2020
Y2 - 7 December 2020 through 11 December 2020
ER -