TY - GEN
T1 - Adversarially learned representations for information obfuscation and inference
AU - Bertran, Martin
AU - Martinez, Natalia
AU - Papadaki, Afroditi
AU - Qiu, Qiang
AU - Rodrigues, Miguel
AU - Reeves, Galen
AU - Sapiro, Guillermo
N1 - Publisher Copyright:
© 36th International Conference on Machine Learning, ICML 2019. All rights reserved.
PY - 2019
Y1 - 2019
N2 - Data collection and sharing are pervasive aspects of modern society. This process can either be voluntary, as in the case of a person taking a facial image to unlock his/her phone, or incidental, such as traffic cameras collecting videos on pedestrians. An undesirable side effect of these processes is that shared data can carry information about attributes that users might consider as sensitive, even when such information is of limited use for the task. It is therefore desirable for both data collectors and users to design procedures that minimize sensitive information leakage. Balancing the competing objectives of providing meaningful individualized service levels and inference while obfuscating sensitive information is still an open problem. In this work, we take an information theoretic approach that is implemented as an unconstrained adversarial game between Deep Neural Networks in a principled, data-driven manner. This approach enables us to learn domain-preserving stochastic transformations that maintain performance on existing algorithms while minimizing sensitive information leakage.
AB - Data collection and sharing are pervasive aspects of modern society. This process can either be voluntary, as in the case of a person taking a facial image to unlock his/her phone, or incidental, such as traffic cameras collecting videos on pedestrians. An undesirable side effect of these processes is that shared data can carry information about attributes that users might consider as sensitive, even when such information is of limited use for the task. It is therefore desirable for both data collectors and users to design procedures that minimize sensitive information leakage. Balancing the competing objectives of providing meaningful individualized service levels and inference while obfuscating sensitive information is still an open problem. In this work, we take an information theoretic approach that is implemented as an unconstrained adversarial game between Deep Neural Networks in a principled, data-driven manner. This approach enables us to learn domain-preserving stochastic transformations that maintain performance on existing algorithms while minimizing sensitive information leakage.
UR - http://www.scopus.com/inward/record.url?scp=85077961867&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077961867&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85077961867
T3 - 36th International Conference on Machine Learning, ICML 2019
SP - 960
EP - 974
BT - 36th International Conference on Machine Learning, ICML 2019
PB - International Machine Learning Society (IMLS)
T2 - 36th International Conference on Machine Learning, ICML 2019
Y2 - 9 June 2019 through 15 June 2019
ER -