Adversarial Neural Networks for Error Correcting Codes

Hung T. Nguyen, Steven Bottone, Kwang Taik Kim, Mung Chiang, H. Vincent Poor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Error correcting codes are a fundamental component in modern day communication systems, demanding extremely high throughput, ultra-reliability and low latency. Recent approaches using machine learning (ML) models as decoders offer both improved performance and great adaptability to unknown environments, where traditional decoders struggle. We introduce a general framework to further boost the performance and applicability of ML models. We propose to combine ML decoders with a competing discriminator network that tries to distinguish between codewords and noisy words, and, hence, guides the decoding models to recover transmitted codewords. Our framework is game-theoretic, motivated by generative adversarial networks (GANs), with the decoder and discriminator competing in a zero-sum game. The decoder learns to simultaneously decode and generate codewords while the discriminator learns to tell the difference between decoded outputs and codewords. Thus, the decoder is able to decode noisy received signals into codewords, increasing the probability of successful decoding. We show a strong connection of our framework with the optimal maximum likelihood decoder by proving that this decoder defines a Nash equilibrium point of our game. Hence, training to equilibrium has a good possibility of achieving the optimal maximum likelihood performance. Moreover, our framework does not require training labels, which are typically unavailable during communications, and, thus, seemingly can be trained online and adapt to channel dynamics. To demonstrate the performance of our framework, we combine it with recent neural decoders and show improved performance compared to the original models and traditional decoding algorithms on various codes.

Original languageEnglish (US)
Title of host publication2021 IEEE Global Communications Conference, GLOBECOM 2021 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728181042
DOIs
StatePublished - 2021
Event2021 IEEE Global Communications Conference, GLOBECOM 2021 - Madrid, Spain
Duration: Dec 7 2021Dec 11 2021

Publication series

Name2021 IEEE Global Communications Conference, GLOBECOM 2021 - Proceedings

Conference

Conference2021 IEEE Global Communications Conference, GLOBECOM 2021
Country/TerritorySpain
CityMadrid
Period12/7/2112/11/21

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Computer Networks and Communications
  • Computer Science Applications
  • Hardware and Architecture
  • Information Systems and Management
  • Safety, Risk, Reliability and Quality
  • Health Informatics

Keywords

  • Error correcting codes
  • adversarial neural networks
  • deep unfolding

Fingerprint

Dive into the research topics of 'Adversarial Neural Networks for Error Correcting Codes'. Together they form a unique fingerprint.

Cite this