TY - JOUR
T1 - Advancing 2D Perovskites for Efficient and Stable Solar Cells
T2 - Challenges and Opportunities
AU - Zhao, Xiaoming
AU - Liu, Tianran
AU - Loo, Yueh Lin
N1 - Publisher Copyright:
© 2021 Wiley-VCH GmbH
PY - 2022/1/20
Y1 - 2022/1/20
N2 - Perovskite solar cells (PSCs) have rapidly emerged as one of the hottest topics in the photovoltaics community owing to their high power-conversion efficiencies (PCE), and the promise to be produced at low cost. Among various PSCs, typical 3D perovskite-based solar cells deliver high PCE but they suffer from severe instability, which restricts their practical applications. In contrast to 3D perovskites, 2D perovskites that incorporate larger, less volatile, and generally more hydrophobic organic cations exhibit much improved thermal, chemical, and environmental stability. 2D perovskites can have different roles within a solar cell, either as the primary light absorber (2D PSCs), or as a capping layer atop a 3D perovskite absorbing layer (2D/3D PSCs). Tradeoffs between PCE and stability exist in both types of PSCs—2D PSCs are more stable but exhibit lower efficiency while 2D/3D PSCs deliver exciting efficiency but show relatively poor stability. To address this PCE/stability tradeoff, the challenges both the 2D and 2D/3D PSCs face are identified and select works the community has undertaken to overcome them are highlighted in this review. It is ended with several recommendations on how to further improve PSCs so their performance and stability can be commensurate with application requirements.
AB - Perovskite solar cells (PSCs) have rapidly emerged as one of the hottest topics in the photovoltaics community owing to their high power-conversion efficiencies (PCE), and the promise to be produced at low cost. Among various PSCs, typical 3D perovskite-based solar cells deliver high PCE but they suffer from severe instability, which restricts their practical applications. In contrast to 3D perovskites, 2D perovskites that incorporate larger, less volatile, and generally more hydrophobic organic cations exhibit much improved thermal, chemical, and environmental stability. 2D perovskites can have different roles within a solar cell, either as the primary light absorber (2D PSCs), or as a capping layer atop a 3D perovskite absorbing layer (2D/3D PSCs). Tradeoffs between PCE and stability exist in both types of PSCs—2D PSCs are more stable but exhibit lower efficiency while 2D/3D PSCs deliver exciting efficiency but show relatively poor stability. To address this PCE/stability tradeoff, the challenges both the 2D and 2D/3D PSCs face are identified and select works the community has undertaken to overcome them are highlighted in this review. It is ended with several recommendations on how to further improve PSCs so their performance and stability can be commensurate with application requirements.
UR - http://www.scopus.com/inward/record.url?scp=85119595441&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85119595441&partnerID=8YFLogxK
U2 - 10.1002/adma.202105849
DO - 10.1002/adma.202105849
M3 - Review article
C2 - 34668250
AN - SCOPUS:85119595441
SN - 0935-9648
VL - 34
JO - Advanced Materials
JF - Advanced Materials
IS - 3
M1 - 2105849
ER -